Компьютерные сети. Учебник


         

Функция определения карты кабелей


Используется для составления карты основных кабелей и кабелей, ответвляющихся от центрального помещения.



Функциональные группы задач управления


Системы управления корпоративными сетями существуют не очень давно. Одной из первых систем такого назначения, получившей широкое распространение, был программный продукт SunNet Manager, выпущенный в 1989 году компанией SunSoft. SunNet Manager был ориентирован на управление коммуникационным оборудованием и контроль трафика сети. Именно эти функции имеют чаще всего в виду, когда говорят о системе управления сетью. Кроме систем управления сетями существуют и системы управления другими элементами корпоративной сети: системы управления ОС, СУБД, корпоративными приложениями. Применяются также системы управления телекоммуникационными сетями: телефонными, а также первичными сетями технологий PDH и SDH.

Независимо от объекта управления, желательно, чтобы система управления выполняла ряд функций, которые определены международными стандартами, обобщающими опыт применения систем управления в различных областях. Существуют рекомендации ITU-T X.700 и близкий к ним стандарт ISO 7498-4, которые делят задачи системы управления на пять функциональных групп:

управление конфигурацией сети и именованием;

обработка ошибок;

анализ производительности и надежности;

управление безопасностью;

учет работы сети.

Рассмотрим задачи этих функциональных областей управления применительно к системам управления сетями.

Управление конфигурацией сети и именованием (Configuration Management).Эти задачи заключаются в конфигурировании параметров как элементов сети (Network Element, NE), так и сети в целом. Для элементов сети, таких как маршрутизаторы, мультиплексоры и т. п., с помощью этой группы задач определяются сетевые адреса, идентификаторы (имена), географическое положение и пр.

Для сети в целом управление конфигурацией обычно начинается с построения карты сети, то есть отображении реальных связей между элементами сети и изменении связей между элементами сети - образование новых физических или логических каналов, изменение таблиц коммутации и маршрутизации.

Управление конфигурацией (как и другие задачи системы управления) могут выполняться в автоматическом, ручном или полуавтоматическом режимах.
Например, карта сети может составляться автоматически, на основании зондирования реальной сети пакетами-исследователями, а может быть введена оператором системы управления вручную. Чаще всего применяются полуавтоматические методы, когда автоматически полученную карту оператор подправляет вручную. Методы автоматического построения топологической карты, как правило, являются фирменными разработками.

Более сложной задачей является настройка коммутаторов и маршрутизаторов на поддержку маршрутов и виртуальных путей между пользователями сети. Согласованная ручная настройка таблиц маршрутизации при полном или частичном отказе от использования протокола маршрутизации (а в некоторых глобальных сетях, например Х.25, такого протокола просто не существует) представляет собой сложную задачу, Многие системы управления сетью общего назначения ее не выполняют, но существуют специализированные системы конкретных производителей, например система NetSys компании Cisco Systems, которая решает ее для маршрутизаторов этой же компании.

Обработка ошибок (Fault Management). Эта группа задач включает выявление, определение и устранение последствий сбоев и отказов в работе сети. На этом уровне выполняется не только регистрация сообщений об ошибках, но и их фильтрация, маршрутизация и анализ на основе некоторой корреляционной модели, Фильтрация позволяет выделить из весьма интенсивного потока сообщений об ошибках, который обычно наблюдается в большой сети, только важные сообщения, маршрутизация обеспечивает их доставку нужному элементу системы управления, а корреляционный анализ позволяет найти причину, породившую поток взаимосвязанных сообщений (например, обрыв кабеля может быть причиной большого количества сообщений о недоступности сетей и серверов).

Устранение ошибок может быть как автоматическим, так и полуавтоматическим. В первом случае система непосредственно управляет оборудованием или программными комплексами и обходит отказавший элемент за счет резервных каналов и т. п. В полуавтоматическом режиме основные решения и действия по устранению неисправности выполняют люди, а система управления только помогает в организации этого процесса - оформляет квитанции на выполнение работ и отслеживает их поэтапное выполнение (подобно системам групповой работы).





В этой группе задач иногда выделяют подгруппу задач управления проблемами, подразумевая под проблемой сложную ситуацию, требующую для разрешения обязательного привлечения специалистов по обслуживанию сети.

Анализ производительности и надежности (Performance Management). Задачи этой группы связаны с оценкой на основе накопленной статистической информации таких параметров, как время реакции системы, пропускная способность реального или виртуального канала связи между двумя конечными абонентами сети, интенсивность трафика в отдельных сегментах и каналах сети, вероятность искажения данных при их передаче через сеть, а также коэффициент готовности сети или ее определенной транспортной службы. Функции анализа производительности и надежности сети нужны как для оперативного управления сетью, так и для планирования развития сети.

Результаты анализа производительности и надежности позволяют контролировать соглашение об уровне обслуживания (Service Level Agreement, SLA), заключаемое между пользователем сети и ее администраторами (или компанией, продающей услуги). Обычно в SLA оговариваются такие параметры надежности, как коэффициент готовности службы в течение года и месяца, максимальное время устранения отказа, а также параметры производительности, например, средняя и максимальная пропускная способности при соединении двух точек подключения пользовательского оборудования, время реакции сети (если информационная служба, для которой определяется время реакции, поддерживается внутри сети), максимальная задержка пакетов при передаче через сеть (если сеть используется только как транзитный транспорт). Без средств анализа производительности и надежности поставщик услуг публичной сети или отдел информационных технологий предприятия не сможет ни проконтролировать, ни тем более обеспечить нужный уровень обслуживания для конечных пользователей сети.

Управление безопасностью (Security Management). Задачи этой группы включают в себя контроль доступа к ресурсам сети (данным и оборудованию) и сохранение целостности данных при их хранении и передаче через сеть.


Базовыми элементами управления безопасностью являются процедуры аутентификации пользователей, назначение и проверка прав доступа к ресурсам сети, распределение и поддержка ключей шифрования, управления полномочиями и т. п. Часто функции этой группы не включаются в системы управления сетями, а реализуются либо в виде специальных продуктов (например, системы аутентификации и авторизации Kerberos, различных защитных экранов, систем шифрования данных), либо входят в состав операционных систем и системных приложений.

Учет работы сети (Accounting Management). Задачи этой группы занимаются регистрацией времени использования различных ресурсов сети - устройств, каналов и транспортных служб. Эти задачи имеют дело с такими понятиями, как время использования службы и плата за ресурсы - billing. Ввиду специфического характера оплаты услуг у различных поставщиков и различными формами соглашения об уровне услуг, эта группа функций обычно не включается в коммерческие системы и платформы управления типа HP Open View, а реализуется в заказных системах, разрабатываемых для конкретного заказчика.

Модель управления OSI не делает различий между управляемыми объектами - каналами, сегментами локальных сетей, мостами, коммутаторами и маршрутизаторами, модемами и мультиплексорами, аппаратным и программным обеспечением компьютеров, СУБД. Все эти объекты управления входят в общее понятие «система», и управляемая система взаимодействует с управляющей системой по открытым протоколам OSI.

Однако на практике деление систем управления по типам управляемых объектов широко распространено. Ставшими классическими системы управления сетями, такие как SunNet Manager, HP Open View или Cabletron Spectrum, управляют только коммуникационными объектами корпоративных сетей, то есть концентраторами и коммутаторами локальных сетей, а также маршрутизаторами и удаленными мостами, как устройствами доступа к глобальным сетям. Оборудованием территориальных сетей обычно управляют системы производителей телекоммуникационного оборудования, такие как RADView компании RAD Data Communications, MainStreetXpress 46020 компании Newbridge и т.


п.

Рассмотрим, как преломляются общие функциональные задачи системы управления, определенные в стандартах X.700/ISO 7498-4, в задачи такого конкретного класса систем управления, как системы управления компьютерами и их системным и прикладным программным обеспечением. Их называют системами управления системой (System Management System).

Обычно система управления системой выполняет следующие функции.

Учет используемых аппаратных и программных средств (Configuration Management). Система автоматически собирает информацию об установленных в сети компьютерах и создает записи в специальной базе данных об аппаратных и программных ресурсах. После этого администратор может быстро выяснить, какими ресурсами он располагает и где тот или иной ресурс находится, например, узнать о том, на каких компьютерах нужно обновить драйверы принтеров, какие компьютеры обладают достаточным количеством памяти, дискового пространства и т. п.

Распределение и установка программного обеспечения (Configuration Management). После завершения обследования администратор может создать пакеты рассылки нового программного обеспечения, которое нужно инсталлировать на всех компьютерах сети или на какой-либо группе компьютеров. В большой сети, где проявляются преимущества системы управления, такой способ инсталляции может существенно уменьшить трудоемкость этой процедуры. Система может также позволять централизованно устанавливать и администрировать приложения, которые запускаются с файловых серверов, а также дать возможность конечным пользователям запускать такие приложения с любой рабочей станции сети.

Удаленный анализ производительности и возникающих проблем (Fault Management and Performance Management). Эта группа функций позволяет удаленно измерять наиболее важные параметры компьютера, операционной системы, СУБД и т. д. (например, коэффициент использования процессора, интенсивность страничных прерываний, коэффициент использования физической памяти, интенсивность выполнения транзакций). Для разрешения проблем эта группа функций может давать администратору возможность брать на себя удаленное управление компьютером в режиме эмуляции графического интерфейса популярных операционных систем.


База данных системы управления обычно хранит детальную информацию о конфигурации всех компьютеров в сети для того, чтобы можно было выполнять удаленный анализ возникающих проблем.

Примерами систем управления системами являются Microsoft System Management Server (SMS), CA Unicenter, HP Operationscenter и многие другие.

Как видно из описания функций системы управления системами, они повторяют функции системы управления сетью, но только для других объектов. Действительно, функция учета используемых аппаратных и программных средств соответствует функции построения карты сети, функция распределения и установки программного обеспечения - функции управления конфигурацией коммутаторов и маршрутизаторов, а функция анализа производительности и возникающих проблем - функции производительности.

Эта близость функций систем управления сетями и систем управления системами позволила разработчикам стандартов OSI не делать различия между ними и разрабатывать общие стандарты управления.

На практике уже несколько лет также заметна отчетливая тенденция интеграции систем управления сетями и системами в единые интегрированные продукты управления корпоративными сетями, например CA Unicenter TNG или ТМЕ-10 IBM/Tivoli. Наблюдается также интеграция систем управления телекоммуникационными сетями с системами управления корпоративными сетями.


Генерирование трафика (Traffic Generation)


Прибор может генерировать трафик для проверки работы сети при повышенной нагрузке. Трафик может генерироваться параллельно с активизированными функциями Сетевая статистика, Статистика ошибочных кадров и

Статистика по коллизиям.

Пользователь может задать параметры генерируемого трафика, такие как интенсивность и размер кадров. Для тестирования мостов и маршрутизаторов прибор может автоматически создавать заголовки IP- и IPX-пакетов, и все что требуется от оператора - это внести адреса источника и назначения.

В ходе испытаний пользователь может увеличить на ходу размер и частоту следования кадров с помощью клавиш управления курсором. Это особенно ценно при поиске источника проблем производительности сети и условий возникновения отказов.



Компьютерные сети. Учебник


Как известно, каждая пара кабеля категории 5 имеет гарантированную полосу пропускания до 100 МГц. Для передачи по такому кабелю данных со скоростью 1000 Мбит/с было решено организовать параллельную передачу одновременно по всем 4 парам кабеля (так же, как и в технологии l00VG-AnyLAN).

Это сразу уменьшило скорость передачи данных по каждой паре до 250 Мбит/с. Однако и для такой скорости необходимо было придумать метод кодирования, который имел бы спектр не выше 100 МГц. Кроме того, одновременное использование четырех пар на первый взгляд лишает сеть возможность распознавать коллизии.

На оба эти вопроса комитет 802.ЗаЬ нашел ответы.

Для кодирования данных был применен код РАМ5, использующий 5 уровней потенциала: -2, -1,0, +1, +2. Поэтому за один такт по одной паре передается 2,322 бит информации. Следовательно, тактовую частоту вместо 250 МГц можно снизить до 125 МГц. При этом если использовать не все коды, а передавать 8 бит за такт (по 4 парам), то выдерживается требуемая скорость передачи в 1000 Мбит/с и еще остается запас неиспользуемых кодов, так как код РАМ5 содержит 54 = 625 комбинаций, а если передавать за один такт по всем четырем парам 8 бит данных, то для этого требуется всего 28 = 256 комбинаций. Оставшиеся комбинации приемник может использовать для контроля принимаемой информации и выделения правильных комбинаций на фоне шума. Код РАМ5 на тактовой частоте 125 МГц укладывается в полосу 100 МГц кабеля категории 5.

Для распознавания коллизий и организации полнодуплексного режима разработчики спецификации 802.3аЬ применили технику, используемую при организации дуплексного режима на одной паре проводов в современных модемах и аппаратуре передачи данных абонентских окончаний ISDN. Вместо передачи по разным парам проводов или разнесения сигналов двух одновременно работающих навстречу передатчиков по диапазону частот оба передатчика работают навстречу друг другу по каждой из 4-х пар в одном и том же диапазоне частот, так как используют один и тот же потенциальный код РАМ5 (рис. 3.26).
Схема гибридной развязки Н

позволяет приемнику и передатчику одного и того же узла использовать одновременно витую пару и для приема и для передачи (так же, как и в трансиверах коаксиального Ethernet).

Рис. 3.26. Двунаправленная передача по четырем парам DTP категории 5

Для отделения принимаемого сигнала от своего собственного приемник вычитает из результирующего сигнала известный ему свой сигнал. Естественно, что это не простая операция и для ее выполнения используются специальные цифровые сигнальные процессоры - DSP (Digital Signal Processor). Такая техника уже прошла проверку практикой, но в модемах и сетях ISDN она применялась совсем на других скоростях.

При полудуплексном режиме работы получение встречного потока данных считается коллизией, а для полнодуплексного режима работы - нормальной ситуацией.

Ввиду того что работы по стандартизации спецификации Gigabit Ethernet на неэкранированной витой паре категории 5 подходят к концу, многие производители и потребители надеются на положительный исход этой работы, так как в этом случае для поддержки технологии Gigabit Ethernet не нужно будет заменять уже установленную проводку категории 5 на оптоволокно или проводку категории 7.



Глобальные сети


Глобальные сети Wide Area Networks, WAN), которые также называют территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству конечных абонентов, разбросанных по большой территории - в пределах области, региона, страны, континента или всего земного шара. Ввиду большой протяженности каналов связи построение глобальной сети требует очень больших затрат, в которые входит стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также эксплуатационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети.

Типичными абонентами глобальной компьютерной сети являются локальные сети предприятий, расположенные в разных городах и странах, которым нужно обмениваться данными между собой. Услугами глобальных сетей пользуются также и отдельные компьютеры. Крупные компьютеры класса мэйнфреймов обычно обеспечивают доступ к корпоративным данным, в то время как персональные компьютеры используются для доступа к корпоративным данным и публичным данным Internet.

Глобальные сети обычно создаются крупными телекоммуникационными компаниями для оказания платных услуг абонентам. Такие сети называют публичными или общественными. Существуют также такие понятия, как оператор сети и поставщик услуг сети. Оператор сети (network operator)

- это та компания, которая поддерживает нормальную работу сети. Поставщик услуг, часто называемый также провайдером (service provider), - та компания, которая оказывает платные услуги абонентам сети. Владелец, оператор и поставщик услуг могут объединяться в одну компанию, а могут представлять и разные компании.

Гораздо реже глобальная сеть полностью создается какой-нибудь крупной корпорацией (такой, например, как Dow Jones или «Транснефть») для своих внутренних нужд. В этом случае сеть называется частной. Очень часто встречается и промежуточный вариант - корпоративная сеть пользуется услугами или оборудованием общественной глобальной сети, но дополняет эти услуги или оборудование своими собственными.
Наиболее типичным примером здесь является аренда каналов связи, на основе которых создаются собственные территориальные сети.

Кроме вычислительных глобальных сетей существуют и другие виды территориальных сетей передачи информации. В первую очередь это телефонные и телеграфные сети, работающие на протяжении многих десятков лет, а также телексная сеть.

Ввиду большой стоимости глобальных сетей существует долговременная тенденция создания единой глобальной сети, которая может передавать данные любых типов: компьютерные данные, телефонные разговоры, факсы, телеграммы, телевизионное изображение, телетекс (передача данных между двумя терминалами), видеотекс (получение хранящихся в сети данных на свой терминал) и т. д., и т. п. На сегодня существенного прогресса в этой области не достигнуто, хотя технологии для создания таких сетей начали разрабатываться достаточно давно - первая технология для интеграции телекоммуникационных услуг ISDN стала развиваться с начала 70-х годов. Пока каждый тип сети существует отдельно и наиболее тесная их интеграция достигнута в области использования общих первичных сетей - сетей PDH и SDH, с помощью которых сегодня создаются постоянные каналы в сетях с коммутацией абонентов. Тем не менее каждая из технологий, как компьютерных сетей, так и телефонных, старается сегодня передавать «чужой» для нее трафик с максимальной эффективностью, а попытки создать интегрированные сети на новом витке развития технологий продолжаются под преемственным названием Broadband ISDN (B-ISDN), то есть широкополосной (высокоскоростной) сети с интеграцией услуг. Сети B-ISDN будут основываться на технологии АТМ, как универсальном транспорте, и поддерживать различные службы верхнего уровня для распространения конечным пользователям сети разнообразной информации - компьютерных данных, аудио- и видеоинформации, а также организации интерактивного взаимодействия пользователей.


Глобальные сети с коммутацией каналов


Сегодня для построения глобальных связей в корпоративной сети доступны сети с коммутацией каналов двух типов - традиционные аналоговые телефонные сети и цифровые сети с интеграцией услуг ISDN. Достоинством сетей с коммутацией каналов является их распространенность, что характерно особенно для аналоговых телефонных сетей. В последнее время сети ISDN во многих странах также стали вполне доступны корпоративному пользователю, а в России это утверждение относится пока только к крупным городам.

Известным недостатком аналоговых телефонных сетей является низкое качество составного канала, которое объясняется использованием телефонных коммутаторов устаревших моделей, работающих по принципу частотного уплотнения каналов (FDM-технологии). На такие коммутаторы сильно воздействуют внешние помехи (например, грозовые разряды или работающие электродвигатели), которые трудно отличить от полезного сигнала. Правда, в аналоговых телефонных сетях все чаще используются цифровые АТС, которые между собой передают голос в цифровой форме. Аналоговым в таких сетях остается только абонентское окончание. Чем больше цифровых АТС в телефонной сети, тем выше качество канала, однако до полного вытеснения АТС, работающих по принципу FDM-коммутации, в нашей стране еще далеко. Кроме качества каналов, аналоговые телефонные сети также обладают таким недостатком, как большое время установления соединения, особенно при импульсном способе набора номера, характерного для нашей страны.

Телефонные сети, полностью построенные на цифровых коммутаторах, и сети ISDN свободны от многих недостатков традиционных аналоговых телефонных сетей. Они предоставляют пользователям высококачественные линии связи, а время установления соединения в сетях ISDN существенно сокращено.

Однако даже при качественных каналах связи, которые могут обеспечить сети с коммутацией каналов, для построения корпоративных глобальных связей эти сети могут оказаться экономически неэффективными. Так как в таких сетях пользователи платят не за объем переданного трафика, а за время соединения, то при трафике с большими пульсациями и, соответственно, большими паузами между пакетами оплата идет во многом не за передачу, а за ее отсутствие. Это прямое следствие плохой приспособленности метода коммутации каналов для соединения компьютеров.

Тем не менее при подключении массовых абонентов к корпоративной сети, например сотрудников предприятия, работающих дома, телефонная сеть оказывается единственным подходящим видом глобальной службы из соображений доступности и стоимости (при небольшом времени связи удаленного сотрудника с корпоративной сетью).



Глобальные сети с коммутацией пакетов


В 80-е годы для надежного объединения локальных сетей и крупных компьютеров в корпоративную сеть использовалась практически одна технология глобальных сетей с коммутацией пакетов - Х.25. Сегодня выбор стал гораздо шире, помимо сетей Х.25 он включает такие технологии, как frame relay, SMDS и АТМ. Кроме этих технологий, разработанных специально для глобальных компьютерных сетей, можно воспользоваться услугами территориальных сетей TCP/IP, которые доступны сегодня как в виде недорогой и очень распространенной сети Internet, качество транспортных услуг которой пока практически не регламентируется и оставляет желать лучшего, так и в виде коммерческих глобальных сетей TCP/IP, изолированных от Internet и предоставляемых в аренду телекоммуникационными компаниями.

В табл. 6.1 приводятся характеристики этих сетей, причем в графе «Трафик» указывается тип трафика, который наиболее подходит для данного типа сетей, а в графе «Скорость доступа» - наиболее типичный диапазон скоростей, предоставляемых поставщиками услуг этих сетей.

Таблица 6.1. Характеристики сетей с коммутацией пакетов

Принципы работы сетей TCP/IP уже были подробно рассмотрены в главе 5. Эти принципы остаются неизменными и при включении в состав этих сетей глобальных сетей различных технологий. Для остальных технологий, кроме SMDS, будут рассмотрены принципы доставки пакетов, пользовательский интерфейс и типы оборудования доступа к сетям данных технологий.

Технология SMDS (Switched Multi-megabit Data Service) была разработана в США для объединения локальных сетей в масштабах мегаполиса, а также предоставления высокоскоростного выхода в глобальные сети. Эта технология поддерживает скорости доступа до 45 Мбит/с и сегментирует кадры МАС - уровня в ячейки фиксированного размера 53 байт, имеющие, как и ячейки технологии АТМ, поле данных в 48 байт. Технология SMDS основана на стандарте IEEE 802.6, который описывает несколько более широкий набор функций, чем SMDS. Стандарты SMDS приняты компанией Bellcore, но международного статуса не имеют. Сети SMDS были реализованы во многих крупных городах США, однако в других странах эта технология распространения не получила. Сегодня сети SMDS вытесняются сетями АТМ, имеющими более широкие функциональные возможности, поэтому в данной книге технология SMDS подробно не рассматривается.



Глобальные связи на основе сетей с коммутацией каналов


Выделенные линии представляют собой наиболее надежное средство соединения локальных сетей через глобальные каналы связи, так как вся пропускная способность такой линии всегда находится в распоряжении взаимодействующих сетей. Однако это и наиболее дорогой вид глобальных связей - при наличии N удаленных локальных сетей, которые интенсивно обмениваются данными друг с другом, нужно иметь Nx(N-l)/2 выделенных линий. Для снижения стоимости глобального транспорта применяют динамически коммутируемые каналы, стоимость которых разделяется между многими абонентами этих каналов.

Наиболее дешевыми оказываются услуги телефонных сетей, так как их коммутаторы оплачиваются большим количеством абонентов, пользующихся телефонными услугами, а не только абонентами, которые объединяют свои локальные сети.

Телефонные сети делятся на аналоговые и цифровые в зависимости от способа мультиплексирования абонентских и магистральных каналов. Более точно, цифровыми называются сети, в которых на абонентских окончаниях информация представлена в, цифровом виде и в которых используются цифровые методы мультиплексирования и коммутации, а аналоговыми - сети, которые принимают данные от абонентов аналоговой формы, то есть от классических аналоговых телефонных аппаратов, а мультиплексирование и коммутацию осуществляют как аналоговыми методами, так и цифровыми. В последние годы происходил достаточно интенсивный процесс замены коммутаторов телефонных сетей на цифровые коммутаторы, которые работают на основе технологии TDM. Однако такая сеть по-прежнему останется аналоговой телефонной сетью, даже если все коммутаторы будут работать по технологии TDM, обрабатывая данные в цифровой форме, если абонентские окончания у нее останутся аналоговыми, а аналого-цифровое преобразование выполняется на ближней к абоненту АТС сети. Новая технология модемов V.90 смогла использовать факт существования большого количества сетей, в которых основная часть коммутаторов являются цифровыми.

К телефонным сетям с цифровыми абонентскими окончаниями относятся так называемые службы Switched 56 (коммутируемые каналы 56 Кбит/с) и цифровые сети с интегральными услугами ISDN (Intergrated Services Digital Network).
Службы Switched 56 появились в ряде западных стран в результате предоставления конечным абонентам цифрового окончания, совместимого со стандартами линий Т1. Эта технология не стала международным стандартом, и сегодня она вытеснена технологией ISDN, которая такой статус имеет.

Сети ISDN рассчитаны не только на передачу голоса, но и компьютерных данных, в том числе и с помощью коммутации пакетов, за счет чего они получили название сетей с интегральными услугами. Однако основным режимом работы сетей ISDN остается режим коммутации каналов, а служба коммутации пакетов обладает слишком низкой по современным меркам скоростью - обычно до 9600 бит/с. Поэтому технология ISDN будет рассмотрена в данном разделе, посвященном сетям с коммутацией каналов. Новое поколение сетей с интеграцией услуг, названное B-ISDN (от broadband - широкополосные), основано уже целиком на технике коммутации пакетов (точнее, ячеек технологии АТМ), поэтому эта технология будет рассмотрена в разделе, посвященном сетям с коммутацией пакетов.

Пока географическая распространенность аналоговых сетей значительно превосходит распространенность цифровых, особенно в нашей стране, но это отставание с каждым годом сокращается.


Глобальные связи на основе выделенных линий


Выделенный канал - это канал с фиксированной полосой пропускания или фиксированной пропускной способностью, постоянно соединяющий двух абонентов. Абонентами могут быть как отдельные устройства (компьютеры или терминалы), так и целые сети.

Выделенные каналы обычно арендуются у компаний - операторов территориальных сетей, хотя крупные корпорации могут прокладывать свои собственные выделенные каналы.

Выделенные каналы делятся на аналоговые и цифровые в зависимости от того, какого типа коммутационная аппаратура применена для постоянной коммутации абонентов - FDM или TDM. На аналоговых выделенных линиях для аппаратуры передачи данных физический и канальный протоколы жестко не определены. Отсутствие физического протокола приводит к тому, что пропускная способность аналоговых каналов зависит от пропускной способности модемов, которые использует пользователь канала. Модем собственно и устанавливает нужный ему протокол физического уровня для канала.

На цифровых выделенных линиях протокол физического уровня зафиксирован - он задан стандартом G.703.

На канальном уровне аналоговых и цифровых выделенных каналов обычно используется один из протоколов семейства HDLC или же более поздний протокол РРР, построенный на основе HDLC для связи многопротокольных сетей.



Характеристики, влияющие на производительность коммутаторов


Производительность коммутатора - то свойство, которое сетевые интеграторы и администраторы ждут от этого устройства в первую очередь.

Основными показателями коммутатора, характеризующими его производительность, являются:

скорость фильтрации кадров;

скорость продвижения кадров;

пропускная способность;

задержка передачи кадра.

Кроме того, существует несколько характеристик коммутатора, которые в наибольшей степени влияют на указанные характеристики производительности. К ним относятся:

тип коммутации - «на лету» или с полной буферизацией;

размер буфера (буферов) кадров;

производительность внутренней шины;

производительность процессора или процессоров;

размер внутренней адресной таблицы.



Иерархия в кабельной системе


Структурированная кабельная система (Structured Cabling System, SCS) - это набор коммутационных элементов (кабелей, разъемов, коннекторов, кроссовых панелей и шкафов), а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях.

Структурированная кабельная система представляет своего рода «конструктор», с помощью которого проектировщик сети строит нужную ему конфигурацию из стандартных кабелей, соединенных стандартными разъемами и коммутируемых на стандартных кроссовых панелях. При необходимости конфигурацию связей можно легко изменить - добавить компьютер, сегмент, коммутатор, изъять ненужное оборудование, а также поменять соединения между компьютерами и концентраторами.

При построении структурированной кабельной системы подразумевается, что каждое рабочее место на предприятии должно быть оснащено розетками для подключения телефона и компьютера, даже если в данный момент этого не требуется. То есть хорошая структурированная кабельная система строится избыточной, В будущем это может сэкономить средства, так как изменения в подключении новых устройств можно производить за счет перекоммутации уже проложенных кабелей.

Структурированная кабельная система планируется и строится иерархически, с главной магистралью и многочисленными ответвлениями от нее (рис. 4.1).

Рис. 4.1.

Иерархия структурированной кабельной системы

Эта система может быть построена на базе уже существующих современных телефонных кабельных систем, в которых кабели, представляющие собой набор витых пар, прокладываются в каждом здании, разводятся между этажами, на каждом этаже используется специальный .кроссовый шкаф, от которого провода в трубах и коробах подводятся к каждой комнате и разводятся по розеткам. К сожалению, в нашей стране далеко не во всех зданиях телефонные линии прокладываются витыми парами, поэтому они непригодны для создания компьютерных сетей, и кабельную систему в таком случае нужно строить заново.


Типичная иерархическая структура структурированной кабельной системы (рис. 4.2) включает:



Рис. 4.2.

Структура кабельных подсистем

горизонтальные подсистемы (в пределах этажа);

вертикальные подсистемы (внутри здания);

подсистему кампуса (в пределах одной территории с несколькими зданиями).

Горизонтальная подсистема

соединяет кроссовый шкаф этажа с розетками пользователей. Подсистемы этого типа соответствуют этажам здания. Вертикальная подсистема соединяет кроссовые шкафы каждого этажа с центральной аппаратной здания. Следующим шагом иерархии является подсистема кампуса, которая соединяет несколько зданий с главной аппаратной всего кампуса. Эта часть кабельной системы обычно называется магистралью (backbone).

Использование структурированной кабельной системы вместо хаотически проложенных кабелей дает предприятию много преимуществ.

Универсальность.

Структурированная кабельная система при продуманной организации может стать единой средой для передачи компьютерных данных в локальной вычислительной сети, организации локальной телефонной сети, передачи видеоинформации и даже передачи сигналов от датчиков пожарной безопасности или охранных систем. Это позволяет автоматизировать многие процессы контроля, мониторинга и управления хозяйственными службами и системами жизнеобеспечения предприятия.

Увеличение срока службы. Срок морального старения хорошо структурированной кабельной системы может составлять 10-15 лет.

Уменьшение стоимости добавления новых пользователей и изменения их мест размещения. Известно, что стоимость кабельной системы значительна и определяется в основном не стоимостью кабеля, а стоимостью работ по его прокладке. Поэтому более выгодно провести однократную работу по прокладке кабеля, возможно, с большим запасом по длине, чем несколько раз выполнять прокладку, наращивая длину кабеля. При таком подходе все работы по добавлению или перемещению пользователя сводятся к подключению компьютера к уже имеющейся розетке.

Возможность легкого расширения сети.



Структурированная кабельная система является модульной, поэтому ее легко расширять. Например, к магистрали можно добавить новую подсеть, не оказывая никакого влияния на существующие подсети. Можно заменить в отдельной подсети тип кабеля независимо от остальной части сети. Структурированная кабельная система является основой для деления сети на легко управляемые логические сегменты, так как она сама уже разделена на физические сегменты.

Обеспечение более эффективного обслуживания.

Структурированная кабельная система облегчает обслуживание и поиск неисправностей по сравнению с шинной кабельной системой. При шинной организации кабельной системы отказ одного из устройств или соединительных элементов приводит к трудно локализуемому отказу всей сети. В структурированных кабельных системах отказ одного сегмента не действует на другие, так как объединение сегментов осуществляется с помощью концентраторов. Концентраторы диагностируют и локализуют неисправный участок.

Надежность.

Структурированная кабельная система имеет повышенную надежность, поскольку производитель такой системы гарантирует не только качество ее отдельных компонентов, но и их совместимость.

Первой структурированной кабельной системой, имеющий все современные черты такого типа систем, была система SYSTIMAX SCS компании Lucent Technologies (ранее - подразделение AT&T). И сегодня компании Lucent Technologies принадлежит основная доля мирового рынка. Многие другие компании также выпускают качественные структурированные кабельные системы, например АМР, BICC Brand-Rex, Siemens, Alcatel, MOD-TAP. На российском рынке успешно завоевывает себе место под солнцем отечественная структурированная кабельная система АйТи-СКС московской компании «АйТи».


Информационная модель управления


Управляемый объект - это представление OSI о ресурсе в целях управления. Ресурс может быть описан как управляемый объект. Конкретный управляемый объект - это экземпляр (instance) некоторого класса управляемых объектов. Модель управления OSI широко использует объектно-ориентированный подход. Класс управляемых объектов - это набор свойств, которые могут быть обязательными или условными. С помощью описания одного класса управляемых объектов, например коммутаторов, можно создать другой класс управляемых объектов, например коммутаторов, поддерживающих технику VLAN, унаследовав все свойства класса коммутаторов, но добавив новые атрибуты.

Для управления ресурсами менеджер и агент должны быть осведомлены о деталях этих ресурсов. Детализация представления управляемых объектов, которые требуются для выполнения функций управления, хранится в репозитории, известном как Management Information Base (MIB). Базы MIB OSI хранят не только описания классов управляемых объектов, но и характеристики сети и ее элементов. Базы MIB содержат характеристики каждой части управляемого оборудования и ресурсов. MIB также включает описание действий, которые могут выполняться на основе собранных данных или же вызываемые внешними командами. Базы MIB позволяют внешним системам опрашивать, изменять, создавать и удалять управляемые объекты (реальные ресурсы сети при этом, естественно, продолжают работать). Протокол CMIP и локальные интерфейсы управления обеспечивают доступ к этим возможностям.

MIB - это концептуальная модель, и она не имеет никакой связи со способом физического или логического хранения данных в ресурсе. Стандарты не определяют аспекты собственно хранения данных. Протоколы OSI определяют синтаксис информации, хранящейся в MIB, и семантику обмена данными.



Интерфейс пользователя


Прибор обычно предоставляет пользователю удобный и интуитивно понятный интерфейс, основанный на системе меню. Графический интерфейс пользователя реализован на многострочном жидкокристаллическом дисплее и индикаторах состояния на светодиодах, извещающих пользователя о наиболее общих проблемах наблюдаемых сетей. Имеется обширный файл подсказок оператору с уровневым доступом в соответствии с контекстом. Информация о состоянии сети представляется таким образом, что пользователи любой квалификации могут ее быстро понять.



Интерфейсы DTE-DCE


Для подключения устройств DCE к аппаратуре, вырабатывающей данные для глобальной сети, то есть к устройствам DTE, существует несколько стандартных интерфейсов, которые представляют собой стандарты физического уровня. К этим стандартам относятся стандарты серии V CCITT,а также стандарты EIA серии RS (Recomended Standards). Две линии стандартов во многом дублируют одни и те же спецификации, но с некоторыми вариациями. Данные интерфейсы позволяют передавать данные со скоростями от 300 бит/с до нескольких мегабит в секунду на небольшие расстояния (15-20 м), достаточные для удобного размещения, например, маршрутизатора и модема.

Интерфейс RS-232C/V.24

является наиболее популярным низкоскоростным интерфейсом. Первоначально он был разработан для передачи данных между компьютером и модемом со скоростью не выше 9600 бит/с на расстояние до 15 метров. Позднее практические реализации этого интерфейса стали работать и на более высоких скоростях - до 115200 бит/с. Интерфейс поддерживает как асинхронный, так и синхронный режим работы. Особую популярность этот интерфейс получил после его реализации в персональных компьютерах (его поддерживают СОМ - порты), где он работает, как правило, только в асинхронном режиме и позволяет подключить к компьютеру не только коммуникационное устройство (такое, как модем), но и многие другие периферийные устройства - мышь, графопостроитель и т. д.

Интерфейс использует 25-контактный разъем или в упрощенном варианте - 9-контактный разъем (рис. 6.3).

Рис. 6.3.

Сигналы интерфейса RS-232C/ V.24

Для обозначения сигнальных цепей используется нумерация CCITT, которая получила название «серия 100». Существуют также двухбуквенные обозначения EIA, которые на рисунке не показаны.

В интерфейсе реализован биполярный потенциальный код (+V, -V на линиях между DTE и DCE. Обычно используется довольно высокий уровень сигнала: 12 или 15 В, чтобы более надежно распознавать сигнал на фоне шума.

При асинхронной передаче данных синхронизирующая информация содержится в самих кодах данных, поэтому сигналы синхронизации TxClk и RxClk отсутствуют.
При синхронной передаче данных модем (DCE) передает на компьютер (DTE) сигналы синхронизации, без которых компьютер не может правильно интерпретировать потенциальный код, поступающий от модема по линии RxD. В случае когда используется код с несколькими состояниями (например, QAM), то один тактовый сигнал соответствует нескольким битам информации.

Нулъ-модемный интерфейс

характерен для прямой связи компьютеров на небольшом расстоянии с помощью интерфейса RS-232C/V.24. В этом случае необходимо применить специальный нуль-модемный кабель, так как каждый компьютер будет ожидать приема данных по линии RxD, что в случае применения модема будет корректно, но в случае прямого соединения компьютеров - нет. Кроме того, нуль-модемный кабель должен имитировать процесс соединения и разрыва через модемы, в котором используется несколько линий (RI, СВ и т. д.). Поэтому для нормальной работы двух непосредственно соединенных компьютеров нуль-модемный кабель должен выполнять следующие соединения:

RI-1+DSR-1- DTR-2;

DTR-1-RI-2+DSR-2;

CD-1-CTS-2+RTS-2;

CTS-1+RTS-1-CD-2;

RxD-l-TxD-2;

TxD-l-RxD-2;

SIG-l-SIG-1;

SHG-l-SHG-2.

Знак «+» обозначает соединение соответствующих контактов на одной стороне кабеля.

Иногда при изготовлении нуль-модемного кабеля ограничиваются только перекрестным соединением линий приемника RxD и передатчика TxD, что для некоторого программного обеспечения бывает достаточно, но в общем случае может привести к некорректной работе программ, рассчитанных на реальные модемы.

Интерфейс RS-449/V.10/V.11 поддерживает более высокую скорость обмена данными и большую удаленность DCE от DTE.Этот интерфейс имеет две отдельные спецификации электрических сигналов. Спецификация RS-423/V.10 (аналогичные параметры имеет спецификация Х.26) поддерживает скорость обмена до 100000 бит/с на расстоянии до 10 ми скорость до 10000 бит/с на расстоянии до 100 м. Спецификация RS-422/V.11(X 27 поддерживает скорость до 10 Мбит/с на расстоянии до 10 ми скорость до 1 Мбит/с на расстоянии до 100 м.


Как и RS-232C, интерфейс RS4 - 49 поддерживает асинхронный и синхронный режимы обмена между DTE и DCE. Для соединения используется 37-контактный разъем.

Интерфейс V.35

был разработан для подключения синхронных модемов. Он обеспечивает только синхронный режим обмена между DTE и DCE на скорости до 168 Кбит/с. Для синхронизации обмена используются специальные тактирующие линии. Максимальное расстояние между DTE и DCE не превышает 15 м, как и в интерфейсе RS-232C.

Интерфейс Х.21

разработан для синхронного обмена данными между DTE и DCE в сетях с коммутацией пакетов Х.25. Это достаточно сложный интерфейс, который поддерживает процедуры установления соединения в сетях с коммутацией пакетов и каналов. Интерфейс был рассчитан на цифровые DCE. Для поддержки синхронных модемов была разработана версия интерфейса Х.21 bis, которая имеет несколько вариантов спецификации электрических сигналов: RS-232C, V.10, V.I 1 и V.35.

Интерфейс «токовая петля 20 л<Л» используется для увеличения расстояния между DTE и DCE. Сигналом является не потенциал, а ток величиной 20 мА, протекающий в замкнутом контуре передатчика и приемника. Дуплексный обмен реализован на двух токовых петлях. Интерфейс работает только в асинхронном режиме. Расстояние между DTE и DCE может составлять несколько километров, а скорость передачи - до 20 Кбит/с.

Интерфейс HSSI (High-Speed Serial Interface) разработан для подключения к устройствам DCE, работающим на высокоскоростные каналы, такие как каналы ТЗ (45 Мбит/с), SONET ОС-1 (52 Мбит/с). Интерфейс работает в синхронном режиме и поддерживает передачу данных в диапазоне скоростей от 300 Кбит/с до 52 Мбит/с.


Использование древовидных баз данных для хранения управляющих знаний


В системе управления знания о поддерживаемых классах объектов и о порожденных экземплярах объектов должны храниться в какой-либо форме, удобной для предоставления модулям системы управления доступа к этой информации. Архитектура управления OSI предусматривает несколько схем базы данных об управляемых объектах и их классах. Эти схемы обычно называют деревьями из-за иерархической организации информации. Существуют следующие деревья.

Дерево наследования (Inheritance Tree), называемое также деревом регистрации. Описывает отношения между базовыми и производными классами. Подчиненный класс наследует все характеристики суперкласса и дополняет их специфическими расширениями (дополнительными атрибутами, поведениями и действиями). Классы объектов OSI регистрируются в том же дереве, что и объекты MIB Internet. Дерево наследования может быть глобальным, то есть начинаться с корня, представляющего весь мир, или локальным, имеющим корень, соответствующий верхнему уровню объектов данной организации или сети. Все управляемые объекты OSI должны быть зарегистрированы в глобальном дереве ISO (в котором зарегистрированы объекты MIB-I, MIB-II, RMON MIB стандарта SNMP). Объекты, представляющие международные стандарты, регистрируются в международной ветви дерева, а частные модели, разработанные производителями систем управления, регистрируются в ветвях дерева, начинающихся с ветви private.

Дерево включений (Containment Tree). Описывает отношения включения управляемых объектов реальной системы.

ПРИМЕЧАНИЕ Между деревом исследования и деревом включений нет прямой связи. Например, в дереве включений объект «корпоративный концентратор» может включать объекты «интерфейс Ethernet» и «модуль удаленного доступа», которые представляют модели реальных модулей, установленных в слоты корпоративного концентратора. В то же время в дереве наследования класс объектов «интерфейсы Ethernet» подчинен классу объектов «интерфейсы», а класс объектов «модуль удаленного доступа» подчинен классу «коммуникационное оборудование третьего уровня», на основании которого он порожден.


Дерево имен (naming tree)

определяет способ именования объектов в системе управления. Объекты OSI могут иметь имена нескольких типов: относительное отличительное имя (Relative Distinguished Name, RDN), отличительное имя (Distinguished Name, DN), иногда называемое полным отличительным именем (Full Distinguished Name, FDN), и локальное отличительное имя (Local Distinguished Name, LDN). Эти имена связаны с деревом включений, так как определяют имена объектов относительно включающих их объектов. Относительное имя, RDN, соответствует короткому имени, которое однозначно определяет объект среди множества других объектов, подчиненных тому же родительскому объекту. Например, имя interface_a является RDN-именем, уникально характеризующим объект среди объектов, подчиненных объекту node_a. Полное отличительное имя FDN представляет собой последовательность RDN-имен, начинающуюся в вершине глобального дерева имен, то есть дерева, описывающего некоторую глобальную сеть. Наконец, локальное отличительное имя - это последовательность RDN-имен, но начинающаяся не в глобальном корне, а в корне дерева имен локальной системы управления, отвечающей за часть глобального дерева имен данной сети.

Дерево имен обычно совмещается с деревом включений.

Пример дерева включений показан на рис. 7.10. Экземпляр управляемого объекта класса соrр-соnс (корпоративный концентратор) имеет имя В1, а также атрибут max-slotes, описывающий максимальное количество слотов данного класса концентраторов, равный в данном случае 14. В этот объект включено ряд других объектов: объекты класса repeator, switch и RAS, которые в свою очередь включают объекты типа interface, описывающие порты модулей концентратора.



Рис. 7.10. Пример дерева включений

Имя класса объекта позволяет обратиться к описанию класса и узнать полный список атрибутов этого класса или ссылку на родительский класс, у которого наследуются все или некоторые атрибуты. Имя экземпляра объекта дает информацию о принадлежности конкретного модуля или интерфейса определенному коммуникационному устройству, например имя В1.Е1.Р2 определяет второй порт модуля повторителя Е1, входящего в состав корпоративного концентратора В1.


Использование масок для структуризации сети


Алгоритм маршрутизации усложняется, когда в систему адресации узлов вносятся дополнительные элементы - маски. В чем же причина отказа от хорошо себя зарекомендовавшего в течение многих лет метода адресации, основанного на классах? Таких причин несколько, и одна из них - потребность в структуризации сетей.

Часто администраторы сетей испытывают неудобства из-за того, что количество централизованно выделенных им номеров сетей недостаточно для того, чтобы структурировать сеть надлежащим образом, например разместить все слабо взаимодействующие компьютеры по разным сетям. В такой ситуации возможны два пути. Первый из них связан с получением от InterNIC или поставщика услуг Internet дополнительных номеров сетей. Второй способ, употребляющийся чаще, связан с использованием технологии масок, которая позволяет разделять одну сеть на несколько сетей.

Допустим, администратор получил в свое распоряжение адрес класса В: 129.44.0.0. Он может организовать сеть с большим числом узлов, номера которых он может брать из диапазона 0.0.0.1-0.0.255.254 (с учетом того, что адреса из одних нулей и одних единиц имеют специальное назначение и не годятся для адресации узлов). Однако ему не нужна одна большая неструктурированная сеть, производственная необходимость диктует администратору другое решение, в соответствии с которым сеть должна быть разделена на три отдельных подсети, при этом трафик в каждой подсети должен быть надежно локализован. Это позволит легче диагностировать сеть и проводить в каждой из подсетей особую политику безопасности.

Посмотрим, как решается эта проблема путем использования механизма масок.

Итак, номер сети, который администратор получил от поставщика услуг, - 129.44.0.0 (10000001 00101100 00000000 00000000). В качестве маски было выбрано значение 255.255.192.0 (111111111111111111000000 00000000). После наложения маски на этот адрес число разрядов, интерпретируемых как номер сети, увеличилось с 16 (стандартная длина поля номера сети для класса В) до 18 (число единиц в маске), то есть администратор получил возможность использовать для нумерации подсетей два дополнительных бита.
Каждая из вновь образованных сетей была подключена к соответственно сконфигурированным портам внутреннего маршрутизатора М2. Кроме того, еще одна сеть (номер 129.44.192.0, маска 255.255.192.0) была выделена для создания соединения между внешним и внутренним маршрутизаторами. Особо отметим, что в этой сети для адресации узлов были заняты всего два адреса 129.44.192.1 (порт маршрутизатора М2) и 129.44.192.2 (порт маршрутизатора Ml), еще два адреса 129.44.192.0 и 129.44.192.255 являются особыми адресами. Следовательно, огромное число узлов (214 - 4) в этой подсети никак не используются.

Извне сеть по-прежнему выглядит, как единая сеть класса В, а на местном уровне это полноценная составная сеть, в которую входят три отдельные сети. Приходящий общий трафик разделяется местным маршрутизатором М2 между этими сетями в соответствии с таблицей маршрутизации. (Заметим, что разделение большой сети, имеющей один адрес старшего класса, например А или В, с помощью масок несет в себе еще одно преимущество по сравнению с использованием нескольких адресов стандартных классов для сетей меньшего размера, например С. Оно позволяет скрыть внутреннюю структуру сети предприятия от внешнего наблюдения и тем повысить ее безопасность.)

Рассмотрим, как изменяется работа модуля IP, когда становится необходимым учитывать наличие масок. Во-первых, в каждой записи таблицы маршрутизации появляется новое поле - поле маски.

Во-вторых, меняется алгоритм определения маршрута по таблице маршрутизации. После того как IP-адрес извлекается из очередного полученного IP-пакета, необходимо определить адрес следующего маршрутизатора, на который надо передать пакет с этим адресом. Модуль IP последовательно просматривает все записи таблицы маршрутизации. С каждой записью производятся следующие действия.

Маска М, содержащаяся в данной записи, накладывается на IP-адрес узла назначения, извлеченный из пакета.

Полученное в результате число является номером сети назначения обрабатываемого пакета. Оно сравнивается с номером сети, который помещен в данной записи таблицы маршрутизации.



Если номера сетей совпадают, то пакет передается маршрутизатору, адрес которого помещен в соответствующем поле данной записи.

Теперь рассмотрим этот алгоритм на примере маршрутизации пакетов в сети, изображенной на рис. 5.16. Все маршрутизаторы внешней сети, встретив пакеты с адресами, начинающимися с 129.44, интерпретируют их как адреса класса В и направляют по маршрутам, ведущим к маршрутизатору Ml. Маршрутизатор Ml в свою очередь направляет весь входной трафик сети 129.44.0.0 на маршрутизатор М2, а именно на его порт 129.44.192.1.

Маршрутизатор М2 обрабатывает все поступившие на него пакеты в соответствии с таблицей маршрутизации (табл. 5.12).

Таблица 5.12. Таблица маршрутизатора М2 в сети с масками одинаковой длины



Первые четыре записи в таблице соответствуют внутренним подсетям, непосредственно подключенным к портам маршрутизатора М2.

Запись 0.0.0.0 с маской 0.0.0.0 соответствует маршруту по умолчанию. Действительно, любой адрес в пришедшем пакете после наложения на него маски 0.0.0.0 даст адрес сети 0.0.0.0, что совпадает с адресом, указанным в записи. Маршрутизатор выполняет сравнение с адресом 0.0.0.0 в последнюю очередь, в том случае когда пришедший адрес не дал совпадения ни с одной записью в таблице, отличающейся от 0.0.0.0. Записей с адресом 0.0.0.0 в таблице маршрутизации может быть несколько. В этом случае маршрутизатор передает пакет по всем таким маршрутам.

Пусть, например, с маршрутизатора Ml на порт 129.44.192.1 маршрутизатора М2 поступает пакет с адресом назначения 129.44.78.200. Модуль IP начинает последовательно просматривать все строки таблицы, до тех пор пока не найдет совпадения номера сети в адресе назначения и в строке таблицы. Маска из первой строки 255.255.192.0 накладывается на адрес 129.44,78.200, в результате чего получается номер сети 129.44.64.0.

В двоичном виде эта операция выглядит следующим образом:

10000001.00101100.01001110.11001000

11111111.11111111.11000000.00000000

- - - - - - - - - - - - - - - - - - - - - - - - - - -



10000001.00101100.01000000.00000000

Полученный номер 129.44.64.0 сравнивается с номером сети в первой строке таблицы 129.44.0.0. Поскольку они не совпадают, то происходит переход к следующей строке. Теперь извлекается маска из второй строки (в данном случае она имеет такое же значение, но в общем случае это совсем не обязательно) и накладывается на адрес назначения пакета 129.44.78.200. Понятно, что из-за совпадения длины масок будет получен тот же номер сети 129.44.64.0. Этот номер совпадает с номером сети во второй строке таблицы, а значит, найден маршрут для данного пакета - он должен быть отправлен на порт маршрутизатора 129.44.64.7 в сеть, непосредственно подключенную к данному маршрутизатору.

Вот еще пример. IP-адрес 129.44.141.15(10000001 00101100 10001101 00001111), который при использовании классов делится на номер сети 129.44.0.0 и номер узла 0.0.141.15, теперь, при использовании маски 255.255.192.0, будет интерпретироваться как пара: 129.44.128.0 - номер сети, 0.0.13.15 - номер узла.


Использование масок переменной длины


В предыдущем примере использования масок (см. рис. 5.15 и 5.16) все подсети имеют одинаковую длину поля номера сети - 18 двоичных разрядов, и, следовательно, для нумерации узлов в каждой из них отводится по 14 разрядов. То есть все сети являются очень большими и имеют одинаковый размер. Однако в этом случае, как и во многих других, более эффективным явилось бы разбиение сети на подсети разного размера. В частности, большое число узлов, вполне желательное для пользовательской подсети, явно является избыточным для подсети, которая связывает два маршрутизатора по схеме «точка-точка». В этом случае требуются всего два адреса для адресации двух портов соседних маршрутизаторов. В предыдущем же примере для этой вспомогательной сети Ml - М2 был использован номер, позволяющий адресовать 214 узлов, что делает такое решение неприемлемо избыточным. Администратор может более рационально распределить имеющееся в его распоряжении адресное пространство с помощью масок переменной длины.

На рис. 5.17 приведен пример распределения адресного пространства, при котором избыточность имеющегося множества IP-адресов может быть сведена к минимуму. Половина из имеющихся адресов (215) была отведена для создания сети с адресом 129.44.0.0 и маской 255.255.128.0. Следующая порция адресов, составляющая четверть всего адресного пространства (214), была назначена для сети 129.44.128.0 с маской 255.255.192.0. Далее в пространстве адресов был «вырезан» небольшой фрагмент для создания сети, предназначенной для связывания внутреннего маршрутизатора М2 с внешним маршрутизатором Ml.

Рис. 5.17. Разделение адресного пространства сети класса В 129.44.0.0 на сети разного размера путем использования масок переменной длины

В IP-адресе такой вырожденной сети для поля номера узла как минимум должны быть отведены два двоичных разряда. Из четырех возможных комбинаций номеров узлов: 00, 01,10 и 11 два номера имеют специальное назначение и не могут быть присвоены узлам, но оставшиеся два 10 и 01 позволяет адресовать порты маршрутизаторов.
В нашем примере сеть была выбрана с некоторым запасом - на 8 узлов. Поле номера узла в таком случае имеет 3 двоичных разряда, маска в десятичной нотации имеет вид 255.255.255.248, а номер сети, как видно из рис. 5.17, равен в данном конкретном случае 129.44.192.0. Если эта сеть является локальной, то на ней могут быть расположены четыре узла помимо двух портов маршуртизаторов.

ПРИМЕЧАНИЕ Заметим, что глобальным связям между маршрутизаторами типа «точка-точка» не обязательно давать IP-адреса, так как к такой сети не могут подключаться никакие другие узлы, кроме двух портов маршрутизаторов. Однако чаще всего такой вырожденной сети все же дают IP-адрес. Это делается, например, для того, чтобы скрыть внутреннюю структуру сети и обращаться к ней по одному адресу входного порта маршрутизатора, в данном примере по адресу 129.44.192.1. Кроме того, этот адрес может понадобиться при туннелировании немаршрутизируемых протоколов в IP-пакеты, что будет рассмотрено ниже.

Оставшееся адресное пространство администратор может «нарезать» на разное количество сетей разного объема в зависимости от своих потребностей. Из оставшегося пула (214 - 4) адресов администратор может образовать еще одну достаточно большую сеть с числом узлов 213. При этом свободными останутся почти столько же адресов (213 - 4), которые также могут быть использованы для создания новых сетей. К примеру, из этого «остатка» можно образовать 31 сеть, каждая из которых равна размеру стандартной сети класса С, и к тому же еще несколько сетей меньшего размера. Ясно, что разбиение может быть другим, но в любом случае с помощью масок переменного размера администратор всегда имеет возможность гораздо рациональнее использовать все имеющиеся у него адреса.

На рис. 5.18 показана схема сети, структурированной с помощью масок переменной длины.



Рис. 5.18. Сеть, структурированная с использованием масок переменной длины

Таблица маршрутизации М2, соответствующая структуре сети, показанной на рис. 5.18, содержит записи о четырех непосредственно подключенных сетях и запись о маршрутизаторе по умолчанию (табл. 5.13).


Процедура поиска маршрута при использовании масок переменной длины ничем не отличается от подобной процедуры, описанной ранее для масок одинаковой длины.

Таблица 5.13. Таблица маршрутизатора М2 в сети с масками переменной длины



Некоторые особенности масок переменной длины проявляются при наличии так называемых «перекрытий». Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети или одному и тому же узлу. В этом случае адрес сети в пришедшем пакете может совпасть с адресами сетей, содержащихся сразу в нескольких записях таблицы маршрутизации.

Рассмотрим пример. Пусть пакет, поступивший из внешней сети на маршрутизатор Ml, имеет адрес назначения 129.44.192.5. Ниже приведен фрагмент таблицы маршрутизации маршрутизатора Ml. Первая из приведенных двух записей говорит о том, что все пакеты, адреса которых начинаются на 129.44, должны быть переданы на маршрутизатор М2. Эта запись выполняет агрегирование

адресов всех подсетей, созданных на базе одной сети 129.44.0.0. Вторая строка говорит о том, что среди всех возможных подсетей сети 129.44.0.0 есть одна, 129.44.192.0, для которой пакеты можно направлять непосредственно, а не через маршрутизатор М2.



Если следовать стандартному алгоритму поиска маршрута по таблице, то сначала на адрес назначения 129.44.192.5 накладывается маска из первой строки 255.255.0.0 и получается результат 129.44.0.0, который совпадает с номером сети в этой строке. Но и при наложении на адрес 129.44.192.5 маски из второй строки 255.255.255.248 полученный результат 129.44.192.0 также совпадает с номером сети во второй строке. В таких случаях должно быть применено следующее правило: «Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть выбирается адрес подсети, дающий большее совпадение разрядов».

В данном примере будет выбран второй маршрут, то есть пакет будет передан в непосредственно подключенную сеть, а не пойдет кружным путем через маршрутизатор М2.



Механизм выбора самого специфического маршрута является обобщением понятия «маршрут по умолчанию». Поскольку в традиционной записи для маршрута по умолчанию 0.0.0.0 маска 0.0.0.0 имеет нулевую длину, то этот маршрут считается самым неспецифическим и используется только при отсутствии совпадений со всеми остальными записями из таблицы маршрутизации.

ПРИМЕЧАНИЕ В IP-пакетах при использовании механизма масок по-прежнему передается только IP-адрес назначения, а маска сети назначения не передается. Поэтому из IP-адреса пришедшего пакета невозможно выяснить, какая часть адреса относится к номеру сети, а какая - к номеру узла. Если маски во всех подсетях имеют один размер, то это не создает проблем. Если же для образования подсетей применяют маски переменной длины, то маршрутизатор должен каким-то образом узнавать, каким адресам сетей какие маски соответствуют. Для этого используются протоколы маршрутизации, переносящие между маршрутизаторами не только служебную информацию об адресах сетей, но и о масках, соответствующих этим номерам. К таким протоколам относятся протоколы RIPv2 и OSPF, а вот, например, протокол RIP маски не распространяет и для использования масок переменной длины не подходит.


Использование масок в IP-адресации


Традиционная схема деления IP-адреса на номер сети и номер узла основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами - 185.23.0.0, а номером узла - 0.0.44.206.

А что если использовать какой-либо другой признак, с помощью которого можно было ,бы более гибко устанавливать границу между номером сети и номером узла? В качестве такого признака сейчас получили широкое распространение маски. Маска - это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

класс А - 11111111. 00000000. 00000000. 00000000 (255.0.0.0);

класс В - 11111111. 11111111. 00000000. 00000000 (255.255.0.0);

класс С-11111111.11111111.11111111.00000000 (255.255.255.0).

ПРИМЕЧАНИЕ Для записи масок используются и другие форматы, например, удобно интерпретировать значение маски, записанной в шестнадцатеричном коде: FF.FF.OO.OO - маска для адресов класса В. Часто встречается и такое обозначение 185.23.44.206/16 - эта запись говорит о том, что маска для этого адреса содержит 16 единиц или что в указанном IP-адресе под номер сети отведено 16 двоичных разрядов.

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации. Например, если рассмотренный выше адрес 185.23.44.206 ассоциировать с маской 255.255.255.0, то номером сети будет 185.23.44.0, а не 185.23.0.0, как это определено системой классов.

В масках количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты.
Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде:

IP-адрес 129.64.134.5 - 10000001. 01000000.10000110. 00000101

Маска 255.255.128.0 - 11111111.11111111.10000000. 00000000

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта - 129.64.0.0, а номером узла - 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, «наложенные» на IP-адрес, определяют в качестве номера сети в двоичном выражении число:

10000001. 01000000. 10000000. 00000000 или в десятичной форме записи - номер сети 129.64.128.0, а номер узла 0.0.6.5.

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов.


Использование различных типов кадров Ethernet


Автоматическое распознавание типов кадров Ethernet выполняется достаточно несложно. Для кодирования типа протокола в поле EtherType указываются значения, превышающие значение максимальной длины поля данных, равное 1500, поэтому кадры Ethernet II легко отличить от других типов кадров по значению поля L/T. Дальнейшее распознавание типа кадра проводится по наличию или отсутствию полей LLC. Поля LLC могут отсутствовать только в том случае, если за полем длины идет начало пакета IPX, а именно 2-байтовое поле контрольной суммы пакета, которое всегда заполняется единицами, что дает значение в 255 байт. Ситуация, когда поля DSAP и SSAP одновременно содержат такие значения, возникнуть не может, поэтому наличие двух байт 255 говорит о том, что это кадр Raw 802.3. В остальных случаях дальнейший анализ проводится в зависимости от значений полей DSAP и SSAP. Если они равны 0*АА, то это кадр Ethernet SNAP, а если нет, то 802.3/LLC.

В табл. 3.2 приведены данные о том, какие типы кадров Ethernet обычно поддерживают реализации популярных протоколов сетевого уровня.

Таблица 3.2. Типы кадров Ethernet, поддерживающие реализации популярных протоколов сетевого уровня .



Использование сетей frame relay


Услуги frame relay обычно предоставляются теми же операторами, которые эксплуатируют сети Х.25. Большая часть производителей выпускает сейчас коммутаторы, которые могут работать как по протоколам Х.25, так и по протоколам frame relay.

Технология frame relay начинает занимать в территориальных сетях с коммутацией пакетов ту же нишу, которую заняла в локальных сетях технология Ethernet. Их роднит то, что они предоставляют только быстрые базовые транспортные услуги, доставляя кадры в узел назначения без гарантий, дейтаграммным способом. Однако если кадры теряются, то сеть frame realay, как и сеть Ethernet, не предпринимает никаких усилий для их восстановления. Отсюда следует простой вывод - полезная пропускная способность прикладных протоколов при работе через сети frame relay будет зависеть от качества каналов и методов восстановления пакетов на уровнях стека, расположенного над протоколом frame relay. Если каналы качественные, то кадры будут теряться и искажаться редко, так что скорость восстановления пакетов протоколом TCP или NCP будет вполне приемлема. Если же кадры искажаются и теряются часто, то полезная пропускная способность в сети frame relay может упасть в десятки раз, как это происходит в сетях Ethernet при плохом состоянии кабельной системы.

Поэтому сети frame relay следует применять только при наличии на магистральных каналах волоконно-оптических кабелей высокого качества. Каналы доступа могут быть и на витой паре, как это разрешает интерфейс G.703 или абонентское окончание ISDN. Используемая на каналах доступа аппаратура передачи данных должна обеспечить приемлемый уровень искажения данных - не ниже 10-6.

На величины задержек сеть frame relay гарантий не дает, и это основная причина, которая сдерживает применение этих сетей для передачи голоса. Передача видеоизображения тормозится и другим отличием сетей frame relay от АТМ - низкой скоростью доступа в 2 Мбит/с, что для передачи видео часто недостаточно.

Тем не менее многие производители оборудования для сетей frame relay поддерживают передачу голоса.
Поддержка устройствами доступа заключается в присвоении кадрам, переносящим замеры голоса, приоритетов. Магистральные коммутаторы frame relay должны обслуживать такие кадры в первую очередь. Кроме того, желательно, чтобы сеть frame relay, передающая кадры с замерами голоса, была недогруженной. При этом в коммутаторах не возникают очереди кадров, и средние задержки в очередях близки к нулевым.

Необходимо также соблюдение еще одного условия для качественной передачи голоса - передавать замеры голоса необходимо в кадрах небольших размеров, иначе на качество будут влиять задержки упаковки замеров в кадр, так называемые задержки пакетизации, которые более подробно рассматриваются в разделе, посвященном технологии АТМ.

Для стандартизации механизмов качественной передачи голоса через сеть frame relay выпущена спецификация FRF.11. Однако в ней решены еще не все проблемы передачи голоса, поэтому работа в этом направлении продолжается.

Ввиду преобладания в коммерческих сетях frame relay услуг постоянных коммутируемых каналов и гарантированной пропускной способности, эти сети предоставляют услуги, очень похожие на услуги дробных выделенных линий Т1/Е1, но только за существенно меньшую плату.

При использовании PVC сеть frame relay хорошо подходит для объединения локальных сетей с помощью мостов, так как в этом случае от моста не нужна поддержка механизма установления виртуального канала, что требует некоторого программного «интеллекта». Мост может отправлять кадры протокола Ethernet или FDDI непосредственно в кадрах LAP-F или же может использовать поверх протокола LAP-F протокол РРР. Стандарт Internet RFC 1490 определяет формат заголовка SNAP для случая передачи через сеть frame relay непосредственно кадров канального уровня.

Чаще доступ к сетям frame relay реализуют не удаленные мосты, а маршрутизаторы, которые в случае поддержки на последовательных портах протокола frame relay как основного называют устройствами доступа FRAD (хотя и мост, и любое устройство, которое поддерживает протоколы UNI frame relay, относятся к классу FRAD).

Так как сети frame relay передают кадры с небольшими задержками, с их помощью часто передают трафик сетей SNA, особенно в том случае, когда они используют такие чувствительные к задержкам протоколы, как SDLC (фирменный протокол канального уровня компании IBM).

Виртуальные каналы в качестве основы построения корпоративной сети имеют один недостаток - при большом количестве точек доступа и смешанном характере связей необходимо большое количество виртуальных каналов, каждый из которых оплачивается отдельно. В сетях с маршрутизацией отдельных пакетов, таких как TCP/IP, абонент платит только за количество точек доступа, а не за количество связей между ними.


Использование служб ISDN в корпоративных сетях


Несмотря на большие отличия от аналоговых телефонных сетей, сети ISDN сегодня используются в основном так же, как аналоговые телефонные сети, то есть как сети с коммутацией каналов, но только более скоростные: интерфейс BRI дает возможность установить дуплексный режим обмена со скоростью 128 Кбит/с (логическое объединение двух каналов типа В), а интерфейс PRI - 2,048 Мбит/с. Кроме того, качество цифровых каналов гораздо выше, чем аналоговых, а это значит, что процент искаженных кадров будет гораздо ниже и полезная скорость обмена данными существенно выше.

Обычно интерфейс BRI используется в коммуникационном оборудовании для подключения отдельных компьютеров или небольших локальных сетей, а интерфейс PRI - в маршрутизаторах, рассчитанных на сети средних размеров.

Что же касается объединения компьютерных сетей для поддержки службы с коммутацией пакетов, то здесь сети ISDN предоставляют не очень большие возможности.

На каналах типа В режим коммутации пакетов поддерживается следующим образом - либо с помощью постоянного соединения с коммутатором сети Х.25, либо с помощью коммутируемого соединения с этим же коммутатором. То есть каналы типа В в сетях ISDN являются только транзитными для доступа к «настоящей» сети Х.25. Собственно, это сводится к первому случаю использования сети ISDN - только как сети с коммутацией каналов.

Развитие технологии трансляции кадров на каналах типа В - технологии frame relay - привело к тому, что сети frame relay стали самостоятельным видом сетей со своей инфраструктурой каналов и коммутаторов. Поэтому эта технология рассматривается ниже в разделе, посвященном сетям с коммутацией пакетов.

Остается служба коммутации пакетов, доступная по каналу D. Так как после передачи адресной информации канал D остается свободным, по нему можно реализовать передачу компьютерных пакетов Х.25, поскольку протокол LAP-D позволяет это делать. Чаще всего сеть ISDN используется не как замена сети Х.25, а как разветвленная сеть доступа к менее географически распространенной и узкоспециализированной сети Х.25 (рис. 6.20).
Такая услуга обычно называется «доступ к сети Х.25 через канал типа D». Скорость доступа к сети Х.25 по каналу типа D обычно не превышает 9600 бит/с.



Рис. 6.20.

Доступ к сети Х.25 через канал типа D сети ISDN

Сети ISDN не рассматриваются разработчиками корпоративных сетей как хорошее средство для создания магистрали сети. Основная причина - отсутствие скоростной службы коммутации пакетов и невысокие скорости каналов, предоставляемых конечным пользователям. Для целей же подключения мобильных и домашних пользователей, небольших филиалов и образования резервных каналов связи сети ISDN сейчас используются очень широко, естественно там, где они существуют. Производители коммуникационного оборудования выпускают широкий спектр продуктов для подключения локальных сетей к ISDN - терминальных адаптеров, удаленных мостов и офисных маршрутизаторов невысокой стоимости.


Использование технологии АТМ


Технология АТМ расширяет свое присутствие в локальных и глобальных сетях не очень быстро, но неуклонно. В последнее время наблюдается устойчивый ежегодный прирост числа сетей, выполненных по этой технологии, в 20-30 %.

В локальных сетях технология АТМ применяется обычно на магистралях, где хорошо проявляются такие ее качества, как масштабируемая скорость (выпускаемые сегодня корпоративные коммутаторы АТМ поддерживают на своих портах скорости 155 и 622 Мбит/с), качество обслуживания (для этого нужны приложения, которые умеют запрашивать нужный класс обслуживания), петле-видные связи (которые позволяют повысить пропускную способность и обеспечить резервирование каналов связи). Петлевидные связи поддерживаются в силу того, что АТМ - это технология с маршрутизацией пакетов, запрашивающих установление соединений, а значит, таблица маршрутизации может эти связи учесть - либо за счет ручного труда администратора, либо за счет протокола маршрутизации PNNL

Основной соперник технологии АТМ в локальных сетях - технология Gigabit Ethernet. Она превосходит АТМ в скорости передачи данных - 1000 Мбит/с по сравнению с 622 Мбит/с, а также в затратах на единицу скорости. Там, где коммутаторы АТМ используются только как высокоскоростные устройства, а возможности поддержки разных типов трафика игнорируются, технологию АТМ, очевидно, заменит технология Gigabit Ethernet. Там же, где качество обслуживания действительно важно (видеоконференции, трансляция телевизионных передач и т. п.), технология АТМ останется. Для объединения настольных компьютеров технология АТМ, вероятно, еще долго не будет использоваться, так как здесь очень серьезную конкуренцию ей составляет технология Fast Ethernet.

В глобальных сетях АТМ применяется там, где сеть frame relay не справляется с большими объемами трафика, и там, где нужно обеспечить низкий уровень задержек, необходимый для передачи информации реального времени.

Сегодня основной потребитель территориальных коммутаторов АТМ - это Internet. Коммутаторы АТМ используются как гибкая среда коммутации виртуальных каналов между IP-маршрутизаторами, которые передают свой трафик в ячейках АТМ.
Сети АТМ оказались более выгодной средой соединения IP-маршрутизаторов, чем выделенные каналы SDH, так как виртуальный канал АТМ может динамически перераспределять свою пропускную способность между пульсирующим трафиком клиентов IP-сетей. Примером магистральной сети АТМ крупного поставщика услуг может служить сеть компании UUNET - одного из ведущих поставщиков услуг Internet Северной Америки (рис. 6.35).



Рис. 6.35.

Магистральная сеть АТМ компании UUNET

Сегодня по данным исследовательской компании Distributed Networking Associates около 85 % всего трафика, переносимого в мире сетями АТМ, составляет трафик компьютерных сетей (наибольшая доля приходится на трафик IP - 32 %).

Хотя технология АТМ разрабатывалась для одновременной передачи данных компьютерных и телефонных сетей, передача голоса по каналам CBR для сетей АТМ составляет всего 5 % от общего трафика, а передача видеоинформации - 10 %. Телефонные компании пока предпочитают передавать свой трафик непосредственно по каналам SDH, не довольствуясь гарантиями качества обслуживания АТМ. Кроме того, технология АТМ пока имеет недостаточно стандартов для плавного включения в существующие телефонные сети, хотя работы в этом направлении идут.

Что же касается совместимости АТМ с технологиями компьютерных сетей, то разработанные в этой области стандарты вполне работоспособны и удовлетворяют пользователей и сетевых интеграторов.


Использование выделенных линий для построения корпоративной сети


Для связи двух локальных сетей по арендуемому или собственному выделенному каналу обычно используются мосты или маршрутизаторы. Эти устройства нужны для того, чтобы по выделенному каналу пересылались не все кадры, циркулирующие в каждой локальной сети, а только те, которые предназначены для другой локальной сети.

Схема установки моста или маршрутизатора в этом случае однотипна (рис. 6.14). Сначала необходимо решить проблему физического сопряжения выходного порта моста или маршрутизатора с аппаратурой передачи данных, то есть DCE, подключаемой непосредственно к абонентскому окончанию линии. Если канал аналоговый, то это интерфейс с модемом, а если цифровой - то с устройством DSU/CSU. Интерфейс определяется требованиями DCE - это может быть RS-232C для низкоскоростных линий или же RS-449 или V.35 для высокоскоростных каналов типа Т1/Е1. Для канала ТЗ/ЕЗ потребуется наличие интерфейса HSSI.

Рис. 6.14.

Соединение сетей с помощью выделенного канала

Некоторые устройства имеют программно настраиваемые последовательные интерфейсы, которые могут работать и как RS-449/V.11, и как RS-449/V.10, и как V.35.

На рис. 6.14 выбрано в качестве примера соединение через цифровой канал Е1, поэтому мост/маршрутизатор использует для подключения к каналу устройство DSU/ CSU с внутренним интерфейсом RS-449 и внешним интерфейсом G.703. Часто крупные маршрутизаторы имеют модули со встроенным интерфейсом G.703, тогда необходимость в устройстве DSU/CSU отпадает. Если же выделенный канал был бы аналоговым, то в качестве DCE был бы необходим модем, поддерживающий режим работы по выделенной линии, причем кроме других различных критериев (скорость, контроль ошибок, компрессия) необходимо учитывать возможность модема работать по предоставленному абонентскому окончанию: 4-проводному или 2-проводному.

После решения проблем физического уровня удаленные мосты готовы к работе. После включения каждый мост начинает передавать все кадры из своей локальной сети в выделенный канал и одновременно (так как практически все выделенные каналы дуплексные) принимать кадры из выделенного канала.
На основании проходящего трафика каждый мост строит адресную таблицу и начинает передавать в выделенный канал кадры только тем станциям, которые действительно находятся в другой сети, а также широковещательные кадры и кадры с неизвестными МАС - адресами. Современные удаленные мосты при пересылке кадров локальных сетей упаковывают их в кадры протокола РРР. Переговорная процедура, которую ведут мосты при установлении РРР-соединения, сводится в основном к выбору параметров канального уровня с помощью протокола LPC, а также к взаимной аутентификации (если такая процедура задана в параметрах протокола РРР обоих мостов).

Маршрутизатор после подключения к выделенной линии и локальной сети необходимо конфигурировать. На рис. 6.14 IP-маршрутизаторы связаны по выделенному каналу. Конфигурирование маршрутизаторов в этом случае подобно конфигурированию в локальных сетях. Каждая локальная сеть получает свой IP-адрес с соответствующей маской. Выделенный канал также является отдельной IP-сетью, поэтому можно ему также дать некоторый IP-адрес из диапазона адресов, которым распоряжается администратор корпоративной сети (в данном случае выделенному каналу присвоен адрес сети, состоящей из 2-х узлов, что определяется маской 255.255,255.252). Можно выделенному каналу и не присваивать IP-адрес - такой интерфейс маршрутизатора называется ненумерованным (unnumbered). Маршрутизатор будет нормально работать в обоих случаях. Как и в локальной сети, маршрутизаторам не нужно вручную задавать аппаратные адреса своих непосредственных соседей, так как отсылая пакеты протокола маршрутизации (RIP или OSPF) по выделенному каналу, маршрутизаторы будут их получать без проблем. Протокол ARP на выделенном канале не используется, так как аппаратные адреса на выделенном канале не имеют практического смысла (в кадре РРР есть два адреса - кадр от DCE или от DTE, но маршрутизатор всегда будет получать кадр от DCE).

Как и в локальных сетях, важной характеристикой удаленных мостов/маршрутизаторов является скорость фильтрации и скорость маршрутизации пакетов, которые часто ограничиваются не внутренними возможностями устройства, а скоростью передачи данных по линии.


Для устойчивой работы сети скорость маршрутизации устройства должна быть выше, чем средняя скорость межсетевого трафика. При объединении сетей с помощью выделенного канала рекомендуется сначала выяснить характер межсетевого трафика - его среднее значение и пульсацию. Для хорошей передачи пульсаций пропускная способность канала должна быть большей или равной величине пульсаций трафика. Но такой подход приводит к очень нерациональной загрузке канала, так как при коэффициенте пульсаций 50; 1 в среднем будет использоваться только 1/50 пропускной способности канала. Поэтому чаще при выборе канала ориентируются на среднее значение межсетевого трафика. Правда, при этом пульсация будет создавать очередь кадров во внутреннем буфере моста или маршрутизатора, так как канал не может передавать данные с такой высокой скоростью, но очередь обязательно рассосется за конечное время, если среднее значение интенсивности межсетевого трафика меньше средней пропускной способности канала.

Для преодоления ограничений на скорость линии, а также для уменьшения части локального трафика, передаваемого по глобальной линии, в удаленных мостах и маршрутизаторах, работающих на глобальные каналы, используются специальные приемы, отсутствующие в локальных устройствах. Эти приемы не входят в стандарты протоколов, но они реализованы практически во всех устройствах, обслуживающих низкоскоростные каналы, особенно каналы со скоростями в диапазоне от 9600 бит/с до 64 Кбит/с.

К таким приемам относятся технологии сжатия пакетов, спуфинга и сегментации пакетов.

Сжатие пакетов (компрессия). Некоторые производители, используя собственные алгоритмы, обеспечивают коэффициент сжатия до 8:1. Стандартные алгоритмы сжатия, применяемые в модемах, устройствах DSU/CSU, самих мостах и маршрутизаторах, обеспечивают коэффициент сжатия до 4:1. После сжатия данных для передачи требуется существенно меньшая скорость канала.

Спуфинг (spoofing). Эта технология позволяет значительно повысить пропускную способность линий, объединяющих локальные сети, работающие по протоколам с большим количеством широковещательных рассылок.


Во многих стеках протоколов для локальных сетей широковещательные рассылки обеспечивают решение задач поиска ресурсов сети. «Спуфинг» означает надувательство, мистификацию. Главной идеей технологии спуфинга является имитация передачи пакета по глобальной сети. Спуфинг используется не только на выделенных каналах, но и на коммутируемых, а также всегда, когда пропускная способность глобальной сети оказывается на границе некоторого минимального уровня.

Рассмотрим технику спуфинга на примере передачи между удаленными сетями пакетов SAP (Service Advertising Protocol - протокол объявления служб) серверами ОС NetWare. Эти пакеты каждый сервер генерирует каждую минуту, чтобы все клиенты сети могли составить правильное представление об имеющихся в сети разделяемых ресурсах - файловых службах, службах печати и т. п. SAP-пакеты распространяются в IPX-пакетах с широковещательным сетевым адресом (ограниченное широковещание). Маршрутизаторы не должны передавать такие пакеты из сети в сеть, но для SAP-пакетов сделано исключение - маршрутизатор, поддерживающий IPX, распространяет его на все порты, кроме того, на который этот пакет поступил (техника, подобная технике split horizon). Это делается для того, чтобы клиенты работали в одинаковых условиях независимо от сети, в которой они находятся. Удаленные мосты передают SAP-пакеты «по долгу службы», так как они имеют широковещательные МАС - адреса.

Таким образом, по выделенной линии может проходить достаточно большое количество SAP-пакетов, которое зависит от количества серверов в каждой из локальных сетей, а также количества служб, о которых объявляет каждый сервер. Если эти пакеты посылаются каким-либо сервером, но не доходят до клиентов, то клиенты не могут воспользоваться службами этого сервера.

Если маршрутизаторы или мосты, объединяющие сети, поддерживают технику спуфинга, то они передают по выделенному каналу не каждый SAP-пакет, а например, только каждый пятый. Интенсивность служебного трафика в выделенном канале при этом уменьшается.


Но для того, чтобы клиенты не теряли из списка ресурсов удаленной сети серверы, маршрутизатор/мост имитирует приход этих пакетов по выделенному каналу, посылая SAP-пакеты от своего имени каждую минуту, как это и положено по протоколу. При этом маршрутизатор/мост посылает несколько раз копию реального SAP-пакета, получаемого раз в 5 минут по выделенному каналу. Такую процедуру маршрутизатор/мост осуществляет для каждого сервера удаленной сети, генерирующего SAP-пакеты.

Существует несколько различных реализации техники спуфинга: посылка оригинальных пакетов в глобальный канал происходит по времени или по количеству принятых пакетов, при изменениях в содержимом пакетов. Последний способ достаточно логичен, так как сервер обычно каждый раз повторяет содержимое своего объявления - изменения в составе служб происходят редко. Поэтому, как в алгоритмах маршрутизации типа «изменение связей» достаточно передавать только измененные пакеты, так и для подтверждения нормальной работы достаточно периодически пересылать даже неизмененный пакет (в качестве сообщения HELLO).

Существует достаточно много протоколов, которые пользуются широковещательными рассылками, и пограничный маршрутизатор/мост должен их все учитывать. Только ОС Unix весьма редко работает по этому способу, так как ее основной коммуникационный стек TCP/IP проектировался для низкоскоростных глобальных линий связи. А такие ОС, как NetWare, Windows NT, OS/2, разрабатывались в основном в расчете на локальные сети, поэтому пропускную способность каналов связи не экономили.

В ОС NetWare существуют три основных типа широковещательных межсетевых сообщений - кроме сообщений SAP, необходимо также передавать сообщения протокола маршрутизации RIP, который программные маршрутизаторы, работающие на серверах NetWare, поддерживают по умолчанию, а также специальные сообщения watchdogs (называемые также keep alive), которыми обмениваются сервер и клиент, установившие логическое соединение. Сообщения watchdogs используются в том случае, когда временно в рамках данной логической сессии пользовательские данные не передаются.


Чтобы поддержать соединение, клиент каждые 5 минут посылает такие сообщения серверу, говоря, что он «жив». Если сервер не получает таких сообщений в течение 15 минут, то сеанс с данным клиентом прекращается. В интерфейсе NetBIOS (а его используют в качестве программного интерфейса приложения во многих ОС) порождается служебный трафик разрешения имен - запросы NameQuery посылаются (также широковещательным способом) каждые 20 минут, если зарегистрированное ранее имя не проявило себя в течение этого периода времени.

Для реализации анализа технология спуфинга требует пакетов сетевого уровня и выше. Поэтому для мостов реализация спуфинга - не такое обычное дело, как для маршрутизаторов. Мосты, поддерживающие спуфинг, не строят таблицы маршрутизации и не продвигают пакеты на основе сетевых адресов, но разбор заголовков и содержимого пакетов верхних уровней делают. Такие интеллектуальные удаленные мосты выпускает, например, компания Gandalf, хотя недорогие маршрутизаторы постепенно вытесняют мосты и в этой области.

Сегментация пакетов - позволяет разделять большие передаваемые пакеты и передавать их сразу через две телефонные линии. Хотя это и не делает телефонные каналы более эффективными, но все же увеличивает скорость обмена данными почти вдвое.


Источники и типы записей в таблице маршрутизации


Первым источником является программное обеспечение стека TCP/IP. При инициализации маршрутизатора это программное обеспечение автоматически заносит в таблицу несколько записей, в результате чего создается так называемая минимальная таблица маршрутизации.

Это, во-первых, записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, информация о которых появляется в стеке при ручном конфигурировании интерфейсов компьютера или маршрутизатора. К таким записям в приведенных примерах относятся записи о сетях 213.34.12.0 и 198.21.17.0, а также запись о маршрутизаторе по умолчанию - default в Unix-маршрутизаторе и 0.0.0.0 в маршрутизаторе MPR Windows NT, В приведенном примере таблицы для маршрутизатора NetBuilder маршрутизатор по умолчанию не используется, следовательно, при поступлении пакета с адресом назначения, отсутствующим в таблице маршрутизации, этот пакет будет отброшен.

Во-вторых, программное обеспечение автоматически заносит в таблицу маршрутизации записи об адресах особого назначения. В приведенных примерах таблица маршрутизатора MPR Windows NT содержит наиболее полный набор записей такого рода. Несколько записей в этой таблице связаны с особым адресом 127.0.0.0 (loopback), который используется для локального тестирования стека TCP/IP. Пакеты, направленные в сеть с номером 127.0.0.0, не передаются протоколом IP на канальный уровень для последующей передачи в сеть, а возвращаются в источник - локальный модуль IP. Записи с адресом 224.0.0.0 требуются для обработки групповых адресов (multicast address). Кроме того, в таблицу могут быть занесены адреса, предназначенные для обработки широковещательных рассылок (например, записи 8 и 11 содержат адрес отправки широковещательного сообщения в соответствующих подсетях, а последняя запись в таблице - адрес ограниченной широковещательной рассылки сообщения). Заметим, что в некоторых таблицах записи об особых адресах вообще отсутствуют.

Вторым источником появления записи в таблице является администратор, непосредственно формирующий запись с помощью некоторой системной утилиты, например программы route, имеющейся в операционных системах Unix и Windows NT.
В аппаратных маршрутизаторах также всегда имеется команда для ручного задания записей таблицы маршрутизации. Заданные вручную записи всегда являются статическими, то есть не имеют срока истечения жизни. Эти записи могут быть как постоянными, то есть сохраняющимися при перезагрузке маршрутизатора, так и временными, хранящимися в таблице только до выключения устройства. Часто администратор вручную заносит запись default о маршрутизаторе по умолчанию. Таким же образом в таблицу маршрутизации может быть внесена запись о специфичном для узла маршруте. Специфичный для узла маршрут содержит вместо номера сети полный IP-адрес, то есть адрес, имеющий ненулевую информацию не только в поле номера сети, но и в поле номера узла. Предполагается, что для такого конечного узла маршрут должен выбираться не так, как для всех остальных узлов сети, к которой он относится. В случае когда в таблице есть разные записи о продвижении пакетов для всей сети и ее отдельного узла, при поступлении пакета, адресованного узлу, маршрутизатор отдаст предпочтение записи с полным адресом узла.

И наконец, третьим источником записей могут быть протоколы маршрутизации, такие как RIP или OSPF. Такие записи всегда являются динамическими, то есть имеют ограниченный срок жизни. Программные маршрутизаторы Windows NT и Unix не показывают источник появления той или иной записи в таблице, а маршрутизатор NetBuilder использует для этой цели поле «Source». В приведенном в табл. 5.10 примере первые две записи созданы программным обеспечением стека на основании данных о конфигурации портов маршрутизатора - это показывает признак «Connected». Следующие две записи обозначены как «Static», что указывает на то, что их ввел вручную администратор. Последняя запись является следствием работы протокола RIP, поэтому в ее поле «TTL» имеется значение 160.


Источники стандартов


Работы по стандартизации вычислительных сетей ведутся большим количеством организаций. В зависимости от статуса организаций различают следующие виды стандартов:

стандарты отдельных фирм (например, стек протоколов DECnet фирмы Digital Equipment или графический интерфейс OPEN LOOK для Unix-систем фирмы Sun);

стандарты специальных комитетов и объединений, создаваемых несколькими фирмами, например стандарты технологии АТМ, разрабатываемые специально созданным объединением АТМ Forum, насчитывающем около 100 коллективных участников, или стандарты союза Fast Ethernet Alliance по разработке стандартов 100 Мбит Ethernet;

национальные стандарты, например, стандарт FDDI, представляющий один из многочисленных стандартов, разработанных Американским национальным институтом стандартов (ANSI), или стандарты безопасности для операционных систем, разработанные Национальным центром компьютерной безопасности (NCSC) Министерства обороны США;

международные стандарты, например, модель и стек коммуникационных протоколов Международной организации по стандартам (ISO), многочисленные стандарты Международного союза электросвязи (ITU), в том числе стандарты на сети с коммутацией пакетов Х.25, сети frame relay, ISDN, модемы и многие другие.

Некоторые стандарты, непрерывно развиваясь, могут переходить из одной категории в другую. В частности, фирменные стандарты на продукцию, получившую широкое распространение, обычно становятся международными стандартами де-факто, так как вынуждают производителей из разных стран следовать фирменным стандартам, чтобы обеспечить совместимость своих изделий с этими популярными продуктами. Например, из-за феноменального успеха персонального компьютера компании IBM фирменный стандарт на архитектуру IBM PC стал международным стандартом де-факто.

Более того, ввиду широкого распространения некоторые фирменные стандарты становятся основой для национальных и международных стандартов де-юре. Например, стандарт Ethernet, первоначально разработанный компаниями Digital Equipment, Intel и Xerox, через некоторое время и в несколько измененном виде был принят как национальный стандарт IEEE 802.3, а затем организация ISO утвердила его в качестве международного стандарта ISO 8802.3.


Далее приводятся краткие сведения об организациях, наиболее активно и успешно занимающихся разработкой стандартов в области вычислительных сетей.

Международная организация по стандартизации (International Organization/or Standardization, ISO, часто называемая также International Standards Organization) представляет собой ассоциацию ведущих национальных организаций по стандартизации разных стран. Главным достижением ISO явилась модель взаимодействия открытых систем OSI, которая в настоящее время является концептуальной основой стандартизации в области вычислительных сетей. В соответствии с моделью OSI этой организацией был разработан стандартный стек коммуникационных протоколов OSI.

Международный союз электросвязи (International Telecommunications Union, JTU) - организация, являющаяся в настоящее время специализированным органом Организации Объединенных Наций. Наиболее значительную роль в стандартизации вычислительных сетей играет постоянно действующий в рамках этой организации Международный консультативный комитет по телефонии и телеграфии (МККТТ) (Consultative Committee on International Telegraphy and Telephony, CCITT). В результате проведенной в 1993 году реорганизации ITU CCITT несколько изменил направление своей деятельности и сменил название - теперь он называется сектором телекоммуникационной стандартизации ITU (ITU Telecommunication Standardization Sector, ITU-T), Основу деятельности ITU-T составляет разработка международных стандартов в области телефонии, телематических служб (электронной почты, факсимильной связи, телетекста, телекса и т. д.), передачи данных, аудио- и видеосигналов. За годы своей деятельности ITU-T выпустил огромное число рекомендаций-стандартов. Свою работу ITU-T строит на изучении опыта сторонних организаций, а также на результатах собственных исследований. Раз в четыре года издаются труды ITU-T в виде так называемой «Книги», которая на самом деле представляет собой целый набор обычных книг, сгруппированных в выпуски, которые, в свою очередь, объединяются в тома.


Каждый том и выпуск содержат логически взаимосвязанные рекомендации. Например, том III Синей Книги содержит рекомендации для цифровых сетей с интеграцией услуг (ISDN), а весь том VIII (за исключением выпуска VIII. 1, который содержит рекомендации серии V для передачи данных по телефонной сети) посвящен рекомендациям серии X: Х.25 для сетей с коммутацией пакетов, Х.400 для систем электронной почты, Х.500 для глобальной справочной службы и многим другим.

Институт инженеров по электротехнике и радиоэлектронике - Institute of Electrical and Electronics Engineers, IEEE) - национальная организация США, определяющая сетевые стандарты. В 1981 году рабочая группа 802 этого института сформулировала основные требования, которым должны удовлетворять локальные вычислительные сети. Группа 802 определила множество стандартов, из них самыми известными являются стандарты 802.1,802.2,802.3 и 802.5, которые описывают общие понятия, используемые в области локальных сетей, а также стандарты на два нижних уровня сетей Ethernet и Token Ring.

Европейская ассоциация производителей компьютеров (European Computer Manufacturers Association, ЕСМА) - некоммерческая организация, активно сотрудничающая с ITU-T и ISO, занимается разработкой стандартов и технических обзоров, относящихся к компьютерной и коммуникационной технологиям. Известна своим стандартом ЕСМА-101, используемым при передаче отформатированного текста и графических изображений с сохранением оригинального формата.

Ассоциация производителей компьютеров и оргтехники (Computer and Business Equipment Manufacturers Association, CBEMA)

- организация американских фирм-производителей аппаратного обеспечения; аналогична европейской ассоциации ЕКМА; участвует в разработке стандартов на обработку информации и соответствующее оборудование.

Ассоциация электронной промышленности (Electronic Industries Association, EIA) - промышленно-торговая группа производителей электронного и сетевого оборудования; является национальной коммерческой ассоциацией США; проявляет значительную активность в разработке стандартов для проводов, коннекторов и других сетевых компонентов.


Ее наиболее известный стандарт - RS-232C.

Министерство обороны США (Department of Defense, DoD)

имеет многочисленные подразделения, занимающиеся созданием стандартов для компьютерных систем. Одной из самых известных разработок DoD является стек транспортных протоколов TCP/IP.

Американский национальный институт стандартов (American National Standards Institute, ANSI) - эта организация представляет США в Международной организации по стандартизации ISO. Комитеты ANSI ведут работу по разработке стандартов в различных областях вычислительной техники. Так, комитет ANSI ХЗТ9.5 совместно с фирмой IBM занимается стандартизацией локальных сетей крупных ЭВМ (архитектура сетей SNA). Известный стандарт FDDI также является результатом деятельности этого комитета ANSI. В области микрокомпьютеров ANSI разрабатывает стандарты на языки программирования, интерфейс SCSI. ANSI разработал рекомендации по переносимости для языков С, FORTRAN, COBOL.

Особую роль в выработке международных открытых стандартов играют стандарты Internet. Ввиду большой и постоянной растущей популярности Internet, эти стандарты становятся международными стандартами «де-факто», многие из которых затем приобретают статус официальных международных стандартов за счет их утверждения одной из вышеперечисленных организаций, в том числе ISO и ITU-T. Существует несколько организационных подразделений, отвечающих за развитие Internet и, в частности, за стандартизацию средств Internet.

Основным из них является Internet Society (ISOC) - профессиональное сообщество, которое занимается общими вопросами эволюции и роста Internet как глобальной коммуникационной инфраструктуры. Под управлением ISOC работает Internet Architecture Board (IAB) - организация, в ведении которой находится технический контроль и координация работ для Internet. IAB координирует направление исследований и новых разработок для стека TCP/IP и является конечной инстанцией при определении новых стандартов Internet.

В IAB входят две основные группы: Internet Engineering Task Force (IETF) и Internet Research Task Force (IRTF).


IETF - это инженерная группа, которая занимается решением ближайших технических проблем Internet. Именно IETF определяет спецификации, которые затем становятся стандартами Internet. В свою очередь, IRTF координирует долгосрочные исследовательские проекты по протоколам TCP/IP.

В любой организации, занимающейся стандартизацией, процесс выработки и принятия стандарта состоит из ряда обязательных этапов, которые, собственно, и составляют процедуру стандартизации. Рассмотрим эту процедуру на примере разработки стандартов Internet.

Сначала в IETF представляется так называемый рабочий проект (draft) в виде, доступном для комментариев. Он публикуется в Internet, после чего широкий круг заинтересованных лиц включается в обсуждение этого документа, в него вносятся исправления, и наконец наступает момент, когда можно зафиксировать содержание документа. На этом этапе проекту присваивается номер RFC (возможен и другой вариант развития событий - после обсуждения рабочий проект отвергается и удаляется из Internet).

После присвоения номера проект приобретает статус предлагаемого стандарта. В течение 6 месяцев этот предлагаемый стандарт проходит проверку практикой, в результате в него вносятся изменения.

Если результаты практических исследований показывают эффективность предлагаемого стандарта,то ему, со всеми внесенными изменениями, присваивается статус проекта стандарта. Затем в течение не менее 4-х месяцев проходят его дальнейшие испытания «на прочность», в число которых входит создание по крайней мере двух программных реализации.

Если во время пребывания в ранге проекта стандарта в документ не было внесено никаких исправлений, то ему может быть присвоен статус официального стандарта Internet. Список утвержденных официальных стандартов Internet публикуется в виде документа RFC и доступен в Internet. Следует заметить, что все стандарты Internet носят название RFC с соответствующим порядковым номером, но далеко не все RFC являются стандартами Internet - часто эти документы представляют собой комментарии к какому-либо стандарту или просто описания некоторой проблемы Internet.


Избыточные коды


Избыточные коды основаны на разбиении исходной последовательности бит на порции, которые часто называют символами. Затем каждый исходный символ заменяется на новый, который имеет большее количество бит, чем исходный. Например, логический код 4В/5В, используемый в технологиях FDDI и Fast Ethernet, заменяет исходные символы длиной в 4 бита на символы длиной в 5 бит. Так как результирующие символы содержат избыточные биты, то общее количество битовых комбинаций в них больше, чем в исходных. Так, в коде 4В/5В результирующие символы могут содержать 32 битовых комбинации, в то время как исходные символы - только 16. Поэтому в результирующем коде можно отобрать 16 таких комбинаций, которые не содержат большого количества нулей, а остальные считать запрещенными кодами (code violation). Кроме устранения постоянной составляющей и придания коду свойства самосинхронизации, избыточные коды позволяют приемнику распознавать искаженные биты. Если приемник принимает запрещенный код, значит, на линии произошло искажение сигнала.

Соответствие исходных и результирующих кодов 4В/5В представлено ниже.

Код 4В/5В затем передается по линии с помощью физического кодирования по одному из методов потенциального кодирования, чувствительному только к длинным последовательностям нулей. Символы кода 4В/5В длиной 5 бит гарантируют, что при любом их сочетании на линии не могут встретиться более трех нулей подряд.

Буква В в названии кода означает, что элементарный сигнал имеет 2 состояния - от английского binary - двоичный. Имеются также коды и с тремя состояниями сигнала, например, в коде 8В/6Т для кодирования 8 бит исходной информации используется код из 6 сигналов, каждый из которых имеет три состояния. Избыточность кода 8В/6Т выше, чем кода 4В/5В, так как на 256 исходных кодов приходится 36=729 результирующих символов.

Использование таблицы перекодировки является очень простой операцией, поэтому этот подход не усложняет сетевые адаптеры и интерфейсные блоки коммутаторов и маршрутизаторов.

Для обеспечения заданной пропускной способности линии передатчик, использующий избыточный код, должен работать с повышенной тактовой частотой. Так, для передачи кодов 4В/5В со скоростью 100 Мб/с передатчик должен работать с тактовой частотой 125 МГц. При этом спектр сигнала на линии расширяется по сравнению со случаем, когда по линии передается чистый, не избыточный код. Тем не менее спектр избыточного потенциального кода оказывается уже спектра манчестерского кода, что оправдывает дополнительный этап логического кодирования, а также работу приемника и передатчика на повышенной тактовой частоте.



Изменения в работе МАС - уровня при полнодуплексной работе


Технология коммутации сама по себе не имеет непосредственного отношения к методу доступа к среде, который используется портами коммутатора. При подключении сегментов, представляющих собой разделяемую среду, порт коммутатора должен поддерживать полудуплексный режим, так как является одним из узлов этого сегмента.

Однако, когда к каждому порту коммутатора подключен не сегмент, а только один компьютер, причем по двум раздельным каналам, как это происходит почти во всех стандартах физического уровня, кроме коаксиальных версий Ethernet, ситуация становится не такой однозначной. Порт может работать как в обычном полудуплексном режиме, так и в полнодуплексном. Подключение к портам коммутатора не сегментов, а отдельных компьютеров называется микросегментацией.

В обычном режиме работы порт коммутатора по-прежнему распознает коллизии, Доменом коллизий в этом случае будет участок сети, включающий передатчик коммутатора, приемник коммутатора, передатчик сетевого адаптера компьютера, приемник сетевого адаптера компьютера и две витые пары, соединяющие передатчики с приемниками (рис. 4.27).

Рис. 4.27. Домен коллизий, образуемый компьютером и портом коммутатора

Коллизия возникает, когда передатчики порта коммутатора и сетевого адаптера одновременно или почти одновременно начинают передачу своих кадров, считая, что изображенный на рисунке сегмент свободен. Правда, вероятность коллизии в таком сегменте гораздо меньше, чем в сегменте, состоящем из 20-30 узлов, но она не нулевая. При этом максимальная производительность сегмента Ethernet в 14 880 кадров в секунду при минимальной длине кадра делится между передатчиком порта коммутатора и передатчиком сетевого адаптера. Если считать, что она делится пополам, то каждому предоставляется возможность передавать примерно по 7440 кадров в секунду.

В полнодуплексном режиме одновременная передача данных передатчиком порта коммутатора и сетевого адаптера коллизией не считается. В принципе, это достаточно естественный режим работы для индивидуальных полнодуплексных каналов связи, и он часто используется в протоколах территориальных сетей.
При полнодуплексной связи порты Ethernet могут передавать данные со скоростью 20 Мбит/с - по 10 Мбит/с в каждом направлении.

Естественно, необходимо, чтобы МАС - узлы взаимодействующих устройств поддерживали этот специальный режим. В случае когда только один узел будет поддерживать полнодуплексный режим, второй узел будет постоянно фиксировать коллизии и приостанавливать свою работу, в то время как другой узел будет продолжать передавать данные, которые никто в этот момент не принимает. Изменения, которые нужно сделать в логике МАС - узла, чтобы он мог работать в полнодуплексном режиме, минимальны - нужно просто отменить фиксацию и отработку коллизий в сетях Ethernet, а в сетях Token Ring и FDDI - посылать кадры в коммутатор, не дожидаясь прихода токена доступа, а тогда, когда это нужно конечному узлу. Фактически, при работе в полнодуплексном режиме МАС - узел не использует метод доступа к среде, разработанный для данной технологии.

Так как переход на полнодуплексный режим работы требует изменения логики работы МАС - узлов и драйверов сетевых адаптеров, то он сначала был опробован при соединении двух коммутаторов. Уже первые модели коммутатора EtherSwitch компании Kalpana поддерживали полнодуплексный режим при взаимном соединении, обеспечивая скорость взаимного обмена 20 Мбит/с.

Позже появились версии полнодуплексного соединения FDDI-коммутаторов, которые при одновременном использовании двух колец FDDI обеспечивали скорость обмена в 200 Мбит/с.

Сейчас для каждой технологии можно найти модели коммутаторов, которые поддерживают полнодуплексный обмен при соединении коммутатор-коммутатор.

После опробования полнодуплексной технологии на соединениях коммутатор-коммутатор разработчики реализовали ее и в сетевых адаптерах, в основном адаптерах Ethernet и Fast Ethernet. При разработке технологий Fast Ethernet и Gigabit Ethernet полнодуплексный режим стал одним из двух полноправных стандартных режимов работы узлов сети. Многие сетевые адаптеры сейчас могут поддерживать оба режима работы, отрабатывая логику алгоритма доступа CSMA/CD при подключении к порту концентратора и работая в полнодуплексном режиме при подключении к порту коммутатора.

При использовании полнодуплексных версий протоколов происходит некоторое сближение различных технологий, так как метод доступа во многом определял лицо каждой технологии. Различие технологий остается в различных форматах кадров, а также в процедурах контроля корректности работы сети на физическом и канальном уровнях.

Полнодуплексные версии протоколов могли бы быть реализованы и в мостах. Принципиальных препятствий для этого не было, просто в период применения локальных мостов потребности в высокоскоростной передаче межсегментного трафика не возникало.


Этап - получение RIP-сообщений от соседей и обработка полученной информации


После получения аналогичных сообщений от маршрутизаторов М2 и МЗ маршрутизатор Ml наращивает каждое полученное поле метрики на единицу и запоминает, через какой порт и от какого маршрутизатора получена новая информация (адрес этого маршрутизатора будет адресом следующего маршрутизатора, если эта запись будет внесена в таблицу маршрутизации). Затем маршрутизатор начинает сравнивать новую информацию с той, которая хранится в его таблице маршрутизации (табл. 5.16).

Таблица 5.16. Таблица маршрутизации маршрутизатора M1

Записи с четвертой по девятую получены от соседних маршрутизаторов, и они претендуют на помещение в таблицу. Однако только записи с четвертой по седьмую попадают в таблицу, а записи восьмая и девятая - нет. Это происходит потому, что они содержат данные об уже имеющихся в таблице Ml сетях, а расстояние до них хуже, чем в существующих записях.

Протокол RIP замещает запись о какой-либо сети только в том случае, если новая информация имеет лучшую метрику (расстояние в хопах меньше), чем имеющаяся. В результате в таблице маршрутизации о каждой сети остаётся только одна запись; если же имеется несколько равнозначных в отношении расстояния путей к одной и той же сети, то все равно в таблице остается одна запись, которая пришла в маршрутизатор первая по времени. Для этого правила существует исключение - если худшая информация о какой-либо сети пришла от того же маршрутизатора, на основании сообщения которого была создана данная запись, то худшая информация замещает лучшую.

Аналогичные операции с новой информацией выполняют и остальные маршрутизаторы сети.


Этап 5 повторяет этап 3 - маршрутизаторы принимают RIP-сообщения, обрабатывают содержащуюся в них информацию и на ее основании корректируют свои таблицы маршрутизации.

Посмотрим, как это делает маршрутизатор Ml (табл. 5.17).

Таблица 5.17. Таблица маршрутизации маршрутизатора M1

На этом этапе маршрутизатор Ml получил от маршрутизатора М3 информацию о сети 132.15.0.0, которую тот в свою очередь на предыдущем цикле работы получил от маршрутизатора М4. Маршрутизатор уже знает о сети 132.15.0.0, причем старая информация имеет лучшую метрику, чем новая, поэтому новая информация об этой сети отбрасывается.

О сети 202.101.16.0 маршрутизатор Ml узнает на этом этапе впервые, причем данные о ней приходят от двух соседей - от МЗ и М4. Поскольку метрики в этих сообщениях указаны одинаковые, то в таблицу попадают данные, которые пришли первыми. В нашем примере считается, что маршрутизатор М2 опередил маршрутизатор МЗ и первым переслал свое RIP-сообщение маршрутизатору Ml.

Если маршрутизаторы периодически повторяют этапы рассылки и обработки RIP-сообщений, то за конечное время в сети установится корректный режим маршругизации. Под корректным режимом маршрутизации здесь понимается такое состояние таблиц маршрутизации, когда все сети будут достижимы из любой сети с помощью некоторого рационального маршрута. Пакеты будут доходить до адресатов и не зацикливаться в петлях, подобных той, которая образуется на рис. 5.26, маршрутизаторами М1-М2-МЗ-М4.

Очевидно, если в сети все маршрутизаторы, их интерфейсы и соединяющие их каналы связи постоянно работоспособны, то объявления по протоколу RIP можно делать достаточно редко, например, один раз в день. Однако в сетях постоянно происходят изменения - изменяется как работоспособность маршрутизаторов и каналов, так и сами маршрутизаторы и каналы могут добавляться в существующую сеть или же выводиться из ее состава.

Для адаптации к изменениям в сети протокол RIP использует ряд механизмов.



Этап - рассылка минимальных таблиц соседям


После инициализации каждого маршрутизатора он начинает посылать своим соседям сообщения протокола RIP, в которых содержится его минимальная таблица.

RIP-сообщения передаются в пакетах протокола UDP и включают два параметра для каждой сети: ее IP-адрес и расстояние до нее от передающего сообщение маршрутизатора.

Соседями являются те маршрутизаторы, которым данный маршрутизатор непосредственно может передать IP-пакет по какой-либо своей сети, не пользуясь услугами промежуточных маршрутизаторов. Например, для маршрутизатора Ml соседями являются маршрутизаторы М2 и МЗ, а для маршрутизатора М4 - маршрутизаторы М2 и МЗ.

Таким образом, маршрутизатор Ml передает маршрутизатору М2 и МЗ следующее сообщение:

сеть 201.36.14.0, расстояние 1;

сеть 132.11.0.0, расстояние 1;

сеть 194.27.18.0, расстояние 1.



Этап - рассылка новой, уже не минимальной, таблицы соседям


Каждый маршрутизатор отсылает новое RIP-сообщение всем своим соседям. В этом сообщении он помещает данные о всех известных ему сетях - как непосредственно подключенных, так и удаленных, о которых маршрутизатор узнал из RIP-сообщений.



Этап - создание минимальных таблиц


В этой сети имеется восемь IP-сетей, связанных четырьмя маршрутизаторами с идентификаторами: Ml, М2, МЗ и М4. Маршрутизаторы, работающие по протоколу RIP, могут иметь идентификаторы, однако для работы протокола они не являются необходимыми. В RIP-сообщениях эти идентификаторы не передаются.

В исходном состоянии в каждом маршрутизаторе программным обеспечением стека TCP/IP автоматически создается минимальная таблица маршрутизации, в которой учитываются только непосредственно подсоединенные сети. На рисунке адреса портов маршрутизаторов в отличие от адресов сетей помещены в овалы.

Таблица 5.14 позволяет оценить примерный вид минимальной таблицы маршрутизации маршрутизатора Ml.

Таблица 5.14. Минимальная таблица маршрутизации маршрутизатора Ml

Минимальные таблицы маршрутизации в других маршрутизаторах будут выглядеть соответственно, например, таблица маршрутизатора М2 будет состоять из трех записей (табл. 5.15).

Таблица 5.15. Минимальная таблица маршрутизации маршрутизатора М2



Этапы доступа к среде


Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения.

Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense, CS). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.

Если среда свободна, то узел имеет право начать передачу кадра. Этот кадр изображен на рис. 3.3 первым. Узел 1

обнаружил, что среда свободна, и начал передавать свой кадр. В классической сети Ethernet на коаксиальном кабеле сигналы передатчика узла 1 распространяются в обе стороны, так что все узлы сети их получают. Кадр данных всегда сопровождается преамбулой (preamble),

которая состоит из 7 байт, состоящих из значений 10101010, и 8-го байта, равного 10101011. Преамбула нужна для вхождения приемника в побитовый и побайтовый синхронизм с передатчиком.

Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ.

Узел 2 во время передачи кадра узлом 1 также пытался начать передачу своего кадра, однако обнаружил, что среда занята - на ней присутствует несущая частота, - поэтому узел 2 вынужден ждать, пока узел 1 не прекратит передачу кадра.

После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна. Из-за задержек распространения сигнала по кабелю не все узлы строго одновременно фиксируют факт окончания передачи кадра узлом 1.

В приведенном примере узел 2

дождался окончания передачи кадра узлом 1, сделал паузу в 9,6 мкс и начал передачу своего кадра.



Эволюция вычислительных систем


Концепция вычислительных сетей является логическим результатом эволюции компьютерной технологии. Первые компьютеры 50-х годов - большие, громоздкие и дорогие - предназначались для очень небольшого числа избранных пользователей. Часто эти монстры занимали целые здания. Такие компьютеры не были предназначены для интерактивной работы пользователя, а использовались в режиме пакетной обработки.



Кабели на основе экранированной витой пары


Экранированная витая пара STP хорошо защищает передаваемые сигналы от внешних помех, а также меньше излучает электромагнитных колебаний вовне, что защищает, в свою очередь, пользователей сетей от вредного для здоровья излучения. Наличие заземляемого экрана удорожает кабель и усложняет его прокладку, так как требует выполнения качественного заземления. Экранированный кабель применяется только для передачи данных, а голос по нему не передают.

Основным стандартом, определяющим параметры экранированной витой пары, является фирменный стандарт IBM. В этом стандарте кабели делятся не на категории, а на типы: Type I, Type 2,..., Type 9.

Основным типом экранированного кабеля является кабель Type 1 стандарта IBM. Он состоит из 2-х пар скрученных проводов, экранированных проводящей оплеткой, которая заземляется. Электрические параметры кабеля Type 1 примерно соответствуют параметрам кабеля UTP категории 5. Однако волновое сопротивление кабеля Type 1 равно 150 Ом (UTP категории 5 имеет волновое сопротивление 100 Ом), поэтому простое «улучшение» кабельной проводки сети путем замены неэкранированной пары UTP на STP Type 1 невозможно. Трансиверы, рассчитанные на работу с кабелем, имеющим волновое сопротивление 100 Ом, будут плохо работать на волновое сопротивление 150 Ом. Поэтому при использовании STP Type 1 необходимы соответствующие трансиверы. Такие трансиверы имеются в сетевых адаптерах Token Ring, так как эти сети разрабатывались для работы на экранированной витой паре. Некоторые другие стандарты также поддерживают кабель STP Type I - например, l00VG-AnyLAN, а также Fast Ethernet (хотя основным типом кабеля для Fast Ethernet является UTP категории 5). В случае если технология может использовать UTP и STP, нужно убедиться, на какой тип кабеля рассчитаны приобретаемые трансиверы. Сегодня кабель STP Type 1 включен в стандарты EIA/TIA-568A, ISO 11801 и EN50173, то есть приобрел международный статус.

Экранированные витые пары используются также в кабеле IBM Type 2, который представляет кабель Type 1 с добавленными 2 парами неэкранированного провода для передачи голоса.

Для присоединения экранированных кабелей к оборудованию используются разъемы конструкции IBM.

Не все типы кабелей стандарта IBM относятся к экранированным кабелям - некоторые определяют характеристики неэкранированного телефонного кабеля (Type 3) и оптоволоконного кабеля (Type 5).



Кабели на основе неэкранированной витой пары


Медный неэкранированный кабель UTP в зависимости от электрических и механических характеристик разделяется на 5 категорий (Category 1 - Category 5). Кабели категорий 1 и 2 были определены в стандарте EIA/TIA-568, но в стандарт 568А уже не вошли, как устаревшие.

Кабели категории 1 применяются там, где требования к скорости передачи минимальны. Обычно это кабель для цифровой и аналоговой передачи голоса и низкоскоростной (до 20 Кбит/с) передачи данных. До 1983 года это был основной тип кабеля для телефонной разводки.

Кабели категории 2 были впервые применены фирмой IBM при построении собственной кабельной системы. Главное требование к кабелям этой категории - способность передавать сигналы со спектром до 1 МГц.

Кабели категории 3 были стандартизованы в 1991 году, когда был разработан Стандарт телекоммуникационных кабельных систем для коммерческих зданий (EIA-568), на основе которого затем был создан действующий стандарт EIA-568A. Стандарт EIA-568 определил электрические характеристики кабелей категории 3 для частот в диапазоне до 16 МГц, поддерживающих, таким образом, высокоскоростные сетевые приложения. Кабель категории 3 предназначен как для передачи данных, так и для передачи голоса. Шаг скрутки проводов равен примерно 3 витка на 1 фут (30,5 см). Кабели категории 3 сейчас составляют основу многих кабельных систем зданий, в которых они используются для передачи и голоса, и данных.

Кабели категории 4 представляют собой несколько улучшенный вариант кабелей категории 3. Кабели категории 4 обязаны выдерживать тесты на частоте передачи сигнала 20 МГц и обеспечивать повышенную помехоустойчивость и низкие потери сигнала. Кабели категории 4 хорошо подходят для применения в системах с увеличенными расстояниями (до 135 метров) и в сетях Token Ring с пропускной способностью 16 Мбит/с. На практике используются редко.

Кабели категории 5 были специально разработаны для поддержки высокоскоростных протоколов. Поэтому их характеристики определяются в диапазоне до 100 МГц. Большинство новых высокоскоростных стандартов ориентируются на использование витой пары 5 категории.
На этом кабеле работают протоколы со скоростью передачи данных 100 Мбит/с - FDDI (с физическим стандартом TP-PMD), Fast Ethernet, l00VG-AnyLAN, а также более скоростные протоколы - АТМ на скорости 155 Мбит/с, и Gigabit Ethernet на скорости 1000 Мбит/с (вариант Gigabit Ethernet на витой паре категории 5 стал стандартом в июне 1999 г.). Кабель категории 5 пришел на замену кабелю категории 3, и сегодня все новые кабельные системы крупных зданий строятся именно на этом типе кабеля (в сочетании с волоконно-оптическим).

Наиболее важные электромагнитные характеристики кабеля категории 5 имеют следующие значения:

полное волновое сопротивление в диапазоне частот до 100 МГц равно 100 Ом (стандарт ISO 11801 допускает также кабель с волновым сопротивлением 120 Ом);

величина перекрестных наводок NEXT в зависимости от частоты сигнала должна принимать значения не менее 74 дБ на частоте 150 кГц и не менее 32 дБ на частоте 100 МГц;

затухание имеет предельные значения от 0,8 дБ (на частоте 64 кГц) до 22 дБ (на частоте 100 МГц);

активное сопротивление не должно превышать 9,4 Ом на 100 м;

емкость кабеля не должна превышать 5,6 нф на 100 м.

Все кабели UTP независимо от их категории выпускаются в 4-парном исполнении. Каждая из четырех пар кабеля имеет определенный цвет и шаг скрутки. Обычно две пары предназначены для передачи данных, а две - для передачи голоса.

Для соединения кабелей с оборудованием используются вилки и розетки RJ-45, представляющие 8-контактные разъемы, похожие на обычные телефонные разъемы. RJ-11.

Особое место занимают кабели категорий 6 и 7, которые промышленность начала выпускать сравнительно недавно. Для кабеля категории 6 характеристики определяются до частоты 200 МГц, а для кабелей категории 7 - до 600 МГц. Кабели категории 7 обязательно экранируются, причем как каждая пара, так и весь кабель в целом. Кабель категории 6 может быть как экранированным, так и неэкранированным. Основное назначение этих кабелей - поддержка высокоскоростных протоколов на отрезках кабеля большей длины, чем кабель UTP категории 5.Некоторые специалисты сомневаются в необходимости применения кабелей категории 7, так как стоимость кабельной системы при их использовании получается соизмеримой по стоимости сети с использованием волоконно-оптических кабелей, а характеристики кабелей на основе оптических волокон выше.


Кабельные сканеры и тестеры


Основное назначение кабельных сканеров - измерение электрических и механических параметров кабелей: длины кабеля, параметра NEXT, затухания, импеданса, схемы разводки пар проводников, уровня электрических шумов в кабеле. Точность измерений, произведенных этими устройствами, ниже, чем у сетевых анализаторов, но вполне достаточна для оценки соответствия кабеля стандарту.

Для определения местоположения неисправности кабельной системы (обрыва, короткого замыкания, неправильно установленного разъема и т. д.) используется метод «отраженного импульса» (Time Domain Reflectometry, TDR). Суть этого метода состоит в том, что сканер излучает в кабель короткий электрический импульс и измеряет время задержки до прихода отраженного сигнала. По полярности отраженного импульса определяется характер повреждения кабеля (короткое замыкание или обрыв). В правильно установленном и подключенном кабеле отраженный импульс почти отсутствует.

Точность измерения расстояния зависит от того, насколько точно известна скорость распространения электромагнитных волн в кабеле. В различных кабелях она будет разной. Скорость распространения электромагнитных волн в кабеле (Nominal Velocity of Propagation, NVP) обычно задается в процентах от скорости света в вакууме. Современные сканеры содержат в себе электронную таблицу данных о NVP для всех основных типов кабелей, что дает возможность пользователю уста­навливать эти параметры самостоятельно после предварительной калибровки.

Кабельные сканеры - это портативные приборы, которые обслуживающий пер­сонал может постоянно носить с собой.

Кабельные тестеры - наиболее простые и дешевые приборы для диагностики кабеля. Они позволяют определить непрерывность кабеля, однако, в отличие от кабельных сканеров, не дают ответа на вопрос о том, в каком месте произошел сбой.



Кадр данных и прерывающая последовательность


Кадр данных включает те же три поля, что и маркер, и имеет кроме них еще несколько дополнительных полей. Таким образом, кадр данных состоит из следующих полей:

начальный ограничитель (Start Delimiter, SD);

управление кадром (Frame Control, PC);

адрес назначения (Destination Address, DA);

адрес источника (Source Address, SA);

данные (INFO);

контрольная сумма (Frame Check Sequence, PCS);

конечный ограничитель (End Delimeter, ED);

статус кадра (Frame Status, FS).

Кадр данных может переносить либо служебные данные для управления кольцом (данные МАС-уровня), либо пользовательские данные (LLC-уровня). Стандарт Token Ring определяет 6 типов управляющих кадров МАС-уровня. Поле FC определяет тип кадра (MAC или LLC), и если он определен как MAC, то поле также указывает, какой из шести типов кадров представлен данным кадром.

Назначение этих шести типов кадров описано ниже.

Чтобы удостовериться, что ее адрес уникальный, станция, когда впервые присоединяется к кольцу, посылает кадр Тест дублирования адреса (Duplicate Address Test, DAT).

Чтобы сообщить другим станциям, что он работоспособен, активный монитор периодически посылает в кольцо кадр Существует активный монитор (Active Monitor Present, AMP).

Кадр Существует резервный монитор (Standby Monitor Present, SMP) отправляется любой станцией, не являющейся активным монитором.

Резервный монитор отправляет кадр Маркер заявки (Claim Token, CT), когда подозревает, что активный монитор отказал, затем резервные мониторы договариваются между собой, какой из них станет новым активным монитором.

Станция отправляет кадр Сигнал (Beacon, BCN) в случае возникновения серьезных сетевых проблем, таких как обрыв кабеля, обнаружение станции, передающей кадры без ожидания маркера, выход станции из строя. Определяя, какая станция отправляет кадр сигнала, диагностирующая программа (ее существование и функции не определяются стандартами Token Ring) может локализовать проблему. Каждая станция периодически передает кадры BCN до тех пор, пока не примет кадр BCN от своего предыдущего (NAUN) соседа.
В результате в кольце только одна станция продолжает передавать кадры BCN - та, у которой имеются проблемы с предыдущим соседом. В сети Token Ring каждая станция знает МАС - адрес своего предыдущего соседа, поэтому Beacon-процедура приводит к выявлению адреса некорректно работающей станции.
Кадр Очистка (Purge, PRG)
используется новым активным монитором для того, чтобы перевести все станции в исходное состояние и очистить кольцо от всех ранее посланных кадров.
В стандарте 802.5 используются адреса той же структуры, что и в стандарте 802.3. Адреса назначения и источника могут иметь длину либо 2, либо 6 байт. Первый бит адреса назначения определяет групповой или индивидуальный адрес как для 2-байтовых, так и для 6-байтовых адресов. Второй бит в 6-байтовых адресах говорит о том, назначен адрес локально или глобально. Адрес, состоящий из всех единиц, является широковещательным.
Адрес источника имеет тот же размер и формат, что и адрес назначения. Однако признак группового адреса используется в нем особым способом. Так как адрес источника не может быть групповым, то наличие единицы в этом разряде говорит о том, что в кадре имеется специальное поле маршрутной информации (Routing Information Field, RIF). Эта информация требуется при работе мостов, связывающих несколько колец Token Ring, в режиме маршрутизации от источника.
Поле данных INFO кадра может содержать данные одного из описанных управляющих кадров уровня MAC или пользовательские данные, упакованные в кадр уровня LLC. Это поле, как уже отмечалось, не имеет определенной стандартом максимальной длины, хотя существуют практические ограничения на его размер, основанные на временных соотношениях между временем удержания маркера и временем передачи кадра.
Поле статуса FS имеет длину 1 байт и содержит 4 резервных бита и 2 подполя: бит распознавания адреса А и бит копирования кадра С. Так как это поле не сопровождается вычисляемой суммой CRC, то используемые биты для надежности дублируются: поле статуса FS имеет вид АСххАСхх.Если бит распознавания адреса не установлен во время получения кадра, это означает, что станция назначения больше не присутствует в сети (возможно, вследствие неполадок, а возможно, станция находится в другом кольце, связанном с данным с помощью моста). Если оба бита опознавания адреса и копирования кадра установлены и бит обнаружения ошибки также установлен, то исходная станция знает, что ошибка случилась после того, как этот кадр был корректно получен.
Прерывающая последовательность
состоит из двух байтов, содержащих начальный и конечный ограничители. Прерывающая последовательность может появиться в любом месте потока битов и сигнализирует о том, что текущая передача кадра или маркера отменяется.

Кадр Ethernet DIX/Ethernet II


Кадр Ethernet DIX, называемым. также кадром Ethernet II, имеет структуру (см. рис. 3.6), совпадающую со структурой кадра Raw 802.3. Однако 2-байтовое поле Длина(Ь) кадра Raw 802.3 в кадре Ethernet DIXиспользуется в качестве поля типа протокола. Это поле, теперь получившее название Type (Т) или EtherType, предназначено для тех же целей, что и поля DSAP и SSAP кадра LLC - для указания типа протокола верхнего уровня, вложившего свой пакет в поле данных этого кадра.

В то время как коды протоколов в полях SAP имеют длину в один байт, в поле Type для кода протокола отводятся 2 байта. Поэтому один и тот же протокол в поле SAP и поле Type будет кодироваться в общем случае разными числовыми значениями. Например, протокол IP имеет код 204810 (0*0800) для поля Ether-Type и значение 6 для поля SAP. Значения кодов протоколов для поля Ethel-Type появились раньше значений SAP, так как фирменная версия Ethernet DIX существовала до появления стандарта 802.3, и ко времени распространения оборудования 802.3 уже стали стандартами де-факто для многих аппаратных и программных продуктов. Так как структуры кадров Ethernet DIX и Raw 802.3 совпадают, то поле длины/типа часто в документации обозначают как поле L/T.



Кадр Ethernet SNAP


Для устранения разнобоя в кодировках типов протоколов, сообщения которых вложены в поле данных кадров Ethernet, комитетом 802.2 была проведена работа по дальнейшей стандартизации кадров Ethernet. В результате появился кадр Ethernet SNAP (SNAP - SubNetwork Access Protocol, протокол доступа к подсетям). Кадр Ethernet SNAP (см. рис. 3.6) представляет собой расширение кадра 802.3/LLC за счет введения дополнительного заголовка протокола SNAP, состоящего из двух полей: OUI и Type. Поле Type состоит из 2-х байт и повторяет по формату и назначению поле Type кадра Ethernet II (то есть в нем используются те же значения кодов протоколов). Поле OUI (Organizationally Unique Identifier) определяет идентификатор организации, которая контролирует коды протоколов в поле Type. С помощью заголовка SNAP достигнута совместимость с кодами протоколов в кадрах Ethernet II, а также создана универсальная схема кодирования протоколов. Коды протоколов для технологий 802 контролирует IEEE, которая имеет OUI, равный 000000. Если в будущем потребуются другие коды протоколов для какой-либо новой технологии, для этого достаточно указать другой идентификатор организации, назначающей эти коды, а старые значения кодов останутся в силе (в сочетании с другим идентификатором OUI).

Так как SNAP представляет собой протокол, вложенный в протокол LLC, то в полях DSAP и SSAP записывается код ОхАА, отведенный для протокола SNAP. Поле Control заголовка LLC устанавливается в 0х03, что соответствует использованию ненумерованных кадров.

Заголовок SNAP является дополнением к заголовку LLC, поэтому он допустим не только в кадрах Ethernet, но и в кадрах протоколов других технологий 802. Например, протокол IP всегда использует структуру заголовков LLC/SNAP при инкапсуляции в кадры всех протоколов локальных сетей: FDDI, Token Ring, 100VG-AnyLAN, Ethernet, Fast Ethernet, Gigabit Ethernet.

Правда, при передаче пакетов IP через сети Ethernet, Fast Ethernet и Gigabit Ethernet протокол IP использует кадры Ethernet DIX.



Кадр LLC


Заголовок кадра 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах IEEE 802.3 и 802.2.

Стандарт 802.3 определяет восемь полей заголовка (рис. 3.6; поле преамбулы и начальный ограничитель кадра на рисунке не показаны).

Поле преамбулы (Preamble)

состоит из семи синхронизирующих байт 10101010. При манчестерском кодировании эта комбинация представляется в физической среде периодическим волновым сигналом с частотой 5 МГц.

Начальный ограничитель кадра (Start-of-frame-delimiter, SFD) состоит из одного байта 10101011. Появление этой комбинации бит является указанием на то, что следующий байт - это первый байт заголовка кадра.

Адрес назначения (Destination Address, DA) может быть длиной 2 или 6 байт. На практике всегда используются адреса из 6 байт. Первый бит старшего байта адреса назначения является признаком того, является адрес индивидуальным или групповым. Если он равен 0, то адрес является индивидуальным (unicast), a если 1, то это групповой адрес (multicast).

Групповой адрес может предназначаться всем узлам сети или же определенной группе узлов сети. Если адрес состоит из всех единиц, то есть имеет шестнадцатеричное представление 0*FFFFFFFFFFFF, то он предназначается всем узлам сети и называется широковещательным адресом (broadcast). В остальных случаях групповой адрес связан только с теми узлами, которые сконфигурированы (например, вручную) как члены группы, номер которой указан в групповом адресе. Второй бит старшего байта адреса определяет способ назначения адреса - централизованный или локальный. Если этот бит равен 0 (что бывает почти всегда в стандартной аппаратуре Ethernet), то адрес назначен централизованно, с помощью комитета IEEE. Комитет IEEE распределяет между производителями оборудования так называемые организационно уникальные идентификаторы (Organizationally Unique Identifier, OUI). Этот идентификатор помещается в 3 старших байта адреса (например, идентификатор 000081 определяет компанию Bay Networks).
За уникальность младших 3- х байт адреса отвечает производитель оборудования. Двадцать четыре бита, отводимые производителю для адресации интерфейсов его продукции, позволяют выпустить 16 миллионов интерфейсов под одним идентификатором организации. Уникальность централизованно распределяемых адресов распространяется на все основные технологии локальных сетей - Ethernet, Token Ring, FDDI и т. д.
ВНИМАНИЕ В стандартах IEEE Ethernet младший бит байта изображается в самой левой позиции поля, а старший бит -в самой правой. Этот нестандартный способ отображения порядка бит в байте соответствует порядку передачи бит в линию связи передатчиком Ethernet. В стандартах других организаций, например RFC IETF, ITU-T, ISO, используется традиционное представление байта, когда младший бит считается самым правым битом байта, а старший - самым левым. При этом порядок следования байтов остается традиционным. Поэтому при чтении стандартов, опубликованных этими организациями, а также чтении данных, отображаемых на экране операционной системой или анализатором протоколов, значения каждого байта кадра Ethernet нужно зеркально отобразить, чтобы получить правильное представление о значении разрядов этого байта в соответствии с документами IEEE. Например, групповой адрес, имеющийся в нотации IEEE вид 1000 0000 0000 0000 1010 0111 1111 0000 0000 0000 0000 0000 или в шестнадцатеричной записи 80-00-A7-F0-00-00, будет, скорее всего, отображен анализатором протоколов в традиционном виде как 01-00-5E-0F-00-00.
Адрес источника (Source Address, SA) - это 2- или 6-байтовое поле, содержащее адрес узла - отправителя кадра. Первый бит адреса всегда имеет значение 0.
Длина (Length, L) - 2-байтовое поле, которое определяет длину поля данных в кадре.
Поле данных (Data) может содержать от 0 до 1500 байт. Но если длина поля меньше 46 байт, то используется следующее поле - поле заполнения, - чтобы дополнить кадр до минимально допустимого значения в 46 байт.
Поле заполнения (Padding)
состоит из такого количества байт заполнителей, которое обеспечивает минимальную длину поля данных в 46 байт.Это обеспечивает корректную работу механизма обнаружения коллизий. Если длина поля данных достаточна, то поле заполнения в кадре не появляется.
Поле контрольной суммы (Frame Check Sequence, FCS) состоит из 4 байт, содержащих контрольную сумму. Это значение вычисляется по алгоритму CRC-32. После получения кадра рабочая станция выполняет собственное вычисление контрольной суммы для этого кадра, сравнивает полученное значение со значением поля контрольной суммы и, таким образом, определяет, не искажен ли полученный кадр.
Кадр 802.3 является кадром МАС-подуровня, поэтому в соответствии со стандартом 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра. Формат кадра LLC был описан выше. Так как кадр LLC имеет заголовок длиной 3 (в режиме LLC1) или 4 байт (в режиме LLC2), то максимальный размер поля данных уменьшается до 1497 или 1496 байт.

Кадр Raw 8023, называемый также


Кадр Raw 8023, называемый также кадром Novell 8023, представлен на рис. 3.6. Из рисунка видно, что это кадр подуровня MAC стандарта 802.3, но без вложенного кадра подуровня LLC. Компания Novell долгое время не использовала служебные поля кадра LLC в своей операционной системе NetWare из-за отсутствия необходимости идентифицировать тип информации, вложенной в поле данных, - там всегда находился пакет протокола IPX, долгое время бывшего единственным протоколом сетевого уровня в ОС NetWare.

Теперь, когда необходимость идентификации протокола верхнего уровня появилась, компания Novell стала использовать возможность инкапсуляции в кадр подуровня MAC кадра LLC, то есть использовать стандартные кадры 802.3/L'LC. Такой кадр компания обозначает теперь в своих операционных системах как кадр 802.2, хотя он является комбинацией заголовков 802.3 и 802.2.


Канальный уровень


На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обязательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и frame relay.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, l00VG-AnyLAN.


В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B. В таких случаях для доставки сообщений между конечными узлами через всю сеть используются средства сетевого уровня. Именно так организованы сети Х.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий АТМ и frame relay.

В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов прикладного уровня или приложений, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что применение такой реализации будет ограниченным - она не подходит для составных сетей разных технологий, например Ethernet и Х.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевид-ные связи. А вот в двухсегментной сети Ethernet, объединенной мостом, реализация SNMP над канальным уровнем будет вполне работоспособна.

Тем не менее для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня - сетевой и транспортный.


Категории услуг протокола АТМ и управление трафиком


Для поддержания требуемого качества обслуживания различных виртуальных соединений и рационального использования ресурсов в сети на уровне протокола АТМ реализовано несколько служб, предоставляющих услуги различных категорий (service categories) по обслуживанию пользовательского трафика. Эти службы являются внутренними службами сети АТМ, они предназначены для поддержания пользовательского трафика различных классов совместно с протоколами AAL. Но в отличие от протоколов AAL, которые работают в конечных узлах сети, данные службы распределены по всем коммутаторам сети. Услуги этих служб разбиты на категории, которые в общем соответствуют классам трафика, поступающим на вход уровня AAL конечного узла. Услуги уровня АТМ заказываются конечным узлом через интерфейс UNI с помощью протокола Q.2931 при установлении виртуального соединения. Как и при обращении к уровню AAL, при заказе услуги необходимо указать категорию услуги, а также параметры трафика и параметры QoS. Эти параметры берутся из аналогичных параметров уровня AAL или же определяются по умолчанию в зависимости от категории услуги.

Всего на уровне протокола АТМ определено пять категорий услуг, которые поддерживаются одноименными службами:

CBR - услуги для трафика с постоянной битовой скоростью;

rtVBR - услуги для трафика с переменной битовой скоростью, требующего соблюдения средней скорости передачи данных и синхронизации источника и приемника;

nrtVBR - услуги для трафика с переменной битовой скоростью, требующего соблюдения средней скорости передачи данных и не требующего синхронизации источника и приемника;

ABR - услуги для трафика с переменной битовой скоростью, требующего соблюдения некоторой минимальной скорости передачи данных и не требующего синхронизации источника и приемника;

UBR - услуги для трафика, не предъявляющего требований к скорости передачи данных и синхронизации источника и приемника.

Названия большинства категорий услуг совпадают с названием типов пользовательского трафика, для обслуживания которого они разработаны, но необходимо понимать, что сами службы уровня АТМ и их услуги - это внутренние механизмы сети АТМ, которые экранируются от приложения уровнем AAL.


Услуги категории CBR предназначены для поддержания трафика синхронных приложений - голосового, эмуляции цифровых выделенных каналов и т. п. Когда приложение устанавливает соединение категории CBR, оно заказывает пиковую скорость трафика ячеек PCR, являющуюся максимальной скоростью, которую может поддерживать соединение без риска потерять ячейку, а также параметры QoS: величины максимальной задержки ячеек CTD, вариации задержки ячеек CDV и максимальной доли потерянных ячеек CLR.

Затем данные передаются по этому соединению с запрошенной скоростью - не с большей и, в большинстве случаев, не меньшей, хотя уменьшение скорости приложением возможно, например, при передаче компрессированного голоса с помощью услуги категории CBR. Любые ячейки, передаваемые станцией с большей скоростью, контролируются первым коммутатором сети и помечаются признаком CLP=1. При перегрузках сети они могут просто отбрасываться сетью. Ячейки, которые запаздывают и не укладываются в интервал, оговоренный параметром вариации задержки CDV, также считаются мало значащими для приложения и отмечаются признаком низкого приоритета CLP=1.

Для соединений CBR нет ограничений на некоторую дискретность заказа скорости PCR, как, например, в каналах Т1/Е1, где скорость должна быть кратна 64 Кбит/с.

По сравнению со службой CBR, службы VBR требуют более сложной процедуры заказа соединения между сетью и приложением. В дополнение к пиковой скорости PCR приложение VBR заказывает еще и два других параметра: длительно поддерживаемую скорость - SCR, которая представляет собой среднюю скорость передачи данных, разрешенную приложению, а также максимальный размер пульсации - MBS, Максимальный размер пульсации измеряется в количестве ячеек АТМ. Пользователь может превышать скорость вплоть до величины PCR, но только на короткие периоды времени, в течение которых передается объем данных, не превышающий MBS. Этот период времени называется Burst Tolerance, ВТ - терпимость к пульсации. Сеть вычисляет этот период как производный от трех заданных значений PCR, SCR и MBS.



Если скорость PCR наблюдается в течение периода времени, большего чем ВТ, то ячейки помечаются как нарушители - устанавливается признак CLP=1.

Для услуг категории rtVBR задаются и контролируются те же параметры QoS, что и для услуг категории CBR, а услуги категории nrtVBR ограничиваются поддержанием параметров трафика. Сеть также поддерживает для обеих категорий услуг VBR определенный максимальный уровень доли потерянных ячеек CLR, который либо задается явно при установлении соединения, либо назначается по умолчанию в зависимости от класса трафика.

Для контроля параметров трафика и QoS в технологии АТМ применяется так называемый обобщенный алгоритм контроля скорости ячеек - Generic Cell Rate Algorithm, который может проверять соблюдение пользователем и сетью таких параметров, как PCR, CDV, SCR, ВТ, CTD и CDV. Он работает по модифицированному алгоритму «дырявого ведра», применяемому в технологии frame relay.

Для многих приложений, которые могут быть чрезвычайно «взрывными» в отношении интенсивности трафика, невозможно точно предсказать параметры трафика, оговариваемые при установлении соединения. Например, обработка транзакций или трафик двух взаимодействующих локальных сетей непредсказуемы по своей природе - изменения интенсивности трафика слишком велики, чтобы заключить с сетью какое-либо разумное соглашение.

В отличие от CBR и обеих служб VBR, служба UBR не поддерживает ни параметры трафика, ни параметры качества обслуживания. Служба UBR предлагает только доставку «по возможности» без каких-либо гарантий. Разработанная специально для обеспечения возможности превышения полосы пропускания, служба UBR представляет собой частичное решение для тех непредсказуемых «взрывных» приложений, которые не готовы согласиться с фиксацией параметров трафика.

Главными недостатками услуг UBR являются отсутствие управления потоком данных и неспособность принимать во внимание другие типы трафика. Несмотря на перегрузку сети, соединения UBR будут продолжать передачу данных. Коммутаторы сети могут буферизовать некоторые ячейки поступающего трафика, но в некоторый момент буферы переполняются, и ячейки теряются.


А так как для соединений UBR не оговаривается никаких параметров трафика и QoS, то их ячейки отбрасываются в первую очередь.

Служба ABR подобно службе UBR предоставляет возможность превышения полосы пропускания, но благодаря технике управления трафиком при перегрузке сети она дает некоторые гарантии сохранности ячеек. ABR - это первый тип служб уровня АТМ, который действительно обеспечивает надежный транспорт для пульсирующего трафика за счет того, что может находить неиспользуемые интервалы в общем трафике сети и заполнять их своими ячейками, если другим категориям служб эти интервалы не нужны.

Как и в службах CBR и VBR, при установлении соединения категории ABR оговаривается значение пиковой скорости PCR. Однако соглашение о пределах изменения задержки передачи ячеек или о параметрах пульсации не заключается.

Вместо этого сеть и конечный узел заключают соглашение о требуемой минимальной скорости передачи MCR. Это гарантирует приложению, работающему в конечном узле, небольшую пропускную способность, обычно минимально необходимую для того, чтобы приложение работало. Конечный узел соглашается не передавать данные со скоростью, выше пиковой, то есть PCR, а сеть соглашается всегда обеспечивать минимальную скорость передачи ячеек MCR.

Если при установлении соединения ABR не задаются значения максимальной и минимальной скорости, то по умолчанию считается, что PCR совпадает со скоростью линии доступа станции к сети, а MCR считается равной нулю.

Трафик соединения категории ABR получает гарантированное качество услуг в отношении доли потерянных ячеек и пропускной способности. Что касается задержек передачи ячеек, то хотя сеть и старается свести их к минимуму, но гарантий по этому параметру не дает. Следовательно, служба ABR не предназначена для приложений реального времени, а предназначена для приложений, в которых поток данных не очень чувствителен к задержкам в передаче.

При передаче трафика CBR, VBR и UBR явное управление перегрузками в сети отсутствует. Вместо этого используется механизм отбрасывания ячеек-нарушителей, а узлы, пользующиеся услугами CBR и VBR, стараются не нарушать условия контракта под угрозой потери ячеек, поэтому они обычно не пользуются дополнительной пропускной способностью, даже если она в данный момент доступна в сети.



Служба ABR позволяет воспользоваться резервами пропускной способности сети, так как сообщает конечному узлу о наличии в данный момент избыточной пропускной способности с помощью механизма обратной связи. Этот же механизм может помочь службе ABR снизить скорость передачи данных конечным узлом в сеть (вплоть до минимального значения MCR), если сеть испытывает перегрузку.

Узел, пользующийся услугами ABR, должен периодически посылать в сеть наряду с ячейками данных специальные служебные ячейки управления ресурсами - Resource Management, RM. Ячейки RM, которые узел отправляет вдоль потока данных, называются прямыми ячейками RM - Forward Recource Management (FRM), а ячейки, которые идут в обратном по отношению к потоку данных направлении, называются обратными ячейками RM - Backward Recource Management (BRM).

Существует несколько петель обратной связи. Самая простая петля обратной связи - между конечными станциями. При ее наличии коммутатор сети извещает конечную станцию о перегрузке с помощью специального флага в поле прямого управления перегрузками (флаг EFCI) ячейки данных, переносимой протоколом АТМ. Затем конечная станция посылает через сеть сообщение, содержащееся в специальной ячейке управления BRM исходной станции, говоря ей о необходимости уменьшить скорость посылки ячеек в сеть.

В этом способе конечная станция несет основную ответственность за управление потоком, а коммутаторы играют пассивную роль в петле обратной связи, только уведомляя станцию - отправитель о перегрузке.

Такой простой способ имеет несколько очевидных недостатков. Конечная станция не узнает из сообщения BRM, на какую величину нужно уменьшить скорость передачи данных в сеть. Поэтому она просто понизит скорость до минимальной величины MCR, хотя, возможно, это и не обязательно. Кроме того, при большой протяженности сети коммутаторы должны продолжать буферизовать данные все время, пока уведомление о перегрузке будет путешествовать по сети, а для глобальных сетей это время может быть достаточно большим, и буферы могут переполниться, так что требуемый эффект достигнут не будет.



Разработаны и более сложные схемы управления потоком, в которых коммутаторы играют более активную роль, а узел-отправитель узнает более точно о возможной в данный момент скорости отправки данных в сеть.

В первой схеме узел-источник посылает в ячейке FRM явное значение скорости передачи данных в сеть, которую он хотел бы поддерживать в данное время. Каждый коммутатор, через который проходит по виртуальному пути это сообщение, может уменьшить запрашиваемую скорость до некоторой величины, которую он может поддерживать в соответствии с имеющимися у него свободными ресурсами (или оставить запрашиваемую скорость без изменения). Узел назначения, получив ячейку FRM, превращает ее в ячейку BRM и отправляет в обратном направлении, причем он тоже может уменьшить запрашиваемую скорость. Получив ответ в ячейке BRM, узел-источник точно узнает, какая скорость отправки ячеек в сеть для него в данный момент доступна.

Во второй схеме каждый коммутатор сети может работать как узел-источник и узел назначения. Как узел-источник он может сам генерировать ячейки FRM и отправлять их по имеющимся виртуальным каналам. Как узел назначения он может отправлять на основе получаемых ячеек FRM ячейки BRM в обратном направлении. Такая схема является более быстродействующей и полезной в протяженных территориальных сетях.

Как видно из описания, служба ABR предназначена не только для прямого поддержания требований к обслуживанию конкретного виртуального соединения, но и для более рационального распределения ресурсов сети между ее абонентами, что в конечном итоге также приводит к повышению качества обслуживания всех абонентов сети.

Коммутаторы сети АТМ используют различные механизмы для поддержания требуемого качества услуг. Кроме описанных в стандартах ITU-T и АТМ Forum механизмов заключения соглашения на основе параметров трафика и параметров QoS, а затем отбрасывания ячеек, не удовлетворяющих условиям соглашения, практически все производители оборудования АТМ реализуют в своих коммутаторах несколько очередей ячеек, обслуживаемых с различными приоритетами.



Стратегия приоритетного обслуживания трафика основана на категориях услуг каждого виртуального соединения. До принятия спецификации ABR в большинстве коммутаторов АТМ была реализована простая одноуровневая схема обслуживания, которая давала трафику CBR первый приоритет, трафику VBR второй, а трафику UBR - третий. При такой схеме комбинация CBR и VBR может потенциально заморозить трафик, обслуживаемый другим классом служб. Такая схема не будет правильно работать с трафиком ABR, так как не обеспечит его требования к минимальной скорости передачи ячеек. Для обеспечения этого требования должна быть выделена некоторая гарантированная полоса пропускания.

Чтобы поддерживать службу ABR, коммутаторы АТМ должны реализовать двухуровневую схему обслуживания, которая бы удовлетворяла требованиям CBR, VBR и ABR. По этой схеме коммутатор предоставляет некоторую часть своей пропускной способности каждому классу служб. Трафик CBR получает часть пропускной способности, необходимую для поддержания пиковой скорости PCR, трафик VBR получает часть пропускной способности, необходимую для поддержания средней скорости SCR, a трафик ABR получает часть пропускной способности, достаточную для обеспечения требования минимальной скорости ячеек MCR. Это гарантирует, что каждое соединение может работать без потерь ячеек и не будет доставлять ячейки ABR за счет трафика CBR или VBR. На втором уровне этого алгоритма трафик CBR и VBR может забрать всю оставшуюся пропускную способность сети, если это необходимо, так как соединения ABR уже получили свою минимальную пропускную способность, которая им гарантировалась.


Классификация маршрутизаторов по областям применения


По областям применения маршрутизаторы делятся на несколько классов.

Магистральные маршрутизаторы (backbone routers) предназначены для построения центральной сети корпорации. Центральная сеть может состоять из большого количества локальных сетей, разбросанных по разным зданиям и использующих самые разнообразные сетевые технологии, типы компьютеров и операционных систем. Магистральные маршрутизаторы - это наиболее мощные устройства, способные обрабатывать несколько сотен тысяч или даже несколько миллионов пакетов в секунду, имеющие большое количество интерфейсов локальных и глобальных сетей. Поддерживаются не только среднескоростные интерфейсы глобальных сетей, такие как Т1/Е1, но и высокоскоростные, например, АТМ или SDH со скоростями 155 Мбит/с или 622 Мбит/с. Чаще всего магистральный маршрутизатор конструктивно выполнен по модульной схеме на основе шасси с большим количеством слотов - до 12-14. Большое внимание уделяется в магистральных моделях надежности и отказоустойчивости маршрутизатора, которая достигается за счет системы терморегуляции, избыточных источников питания, заменяемых «на ходу» (hot swap) модулей, а также симметричного муль-типроцессирования. Примерами магистральных маршрутизаторов могут служить маршрутизаторы Backbone Concentrator Node (BCN) компании Nortel Networks (ранее Bay Networks), Cisco 7500, Cisco 12000.

Маршрутизаторы региональных отделений соединяют региональные отделения между собой и с центральной сетью. Сеть регионального отделения, так же как и центральная сеть, может состоять из нескольких локальных сетей. Такой маршрутизатор обычно представляет собой некоторую упрощенную версию магистрального маршрутизатора. Если он выполнен на основе шасси, то количество слотов его шасси меньше: 4-5. Возможен также конструктив с фиксированным количеством портов. Поддерживаемые интерфейсы локальных и глобальных сетей менее скоростные. Примерами маршрутизаторов региональных отделений могут служить маршрутизаторы BLN, ASN компании Nortel Networks, Cisco 3600, Cisco 2500, NetBuilder II компании 3Com.
Это наиболее обширный класс выпускаемых маршрутизаторов, характеристики которых могут приближаться к характеристикам магистральных маршрутизаторов, а могут и опускаться до характеристик маршрутизаторов удаленных офисов.

Маршрутизаторы удаленных офисов

соединяют, как правило, единственную локальную сеть удаленного офиса с центральной сетью или сетью регионального отделения по глобальной связи. В максимальном варианте такие маршрутизаторы могут поддерживать и два интерфейса локальных сетей. Как правило, интерфейс локальной сети - это Ethernet 10 Мбит/с, а интерфейс глобальной сети - выделенная линия со скоростью 64 Кбит/с, 1,544 или 2 Мбит/с. Маршрутизатор удаленного офиса может поддерживать работу по коммутируемой телефонной линии в качестве резервной связи для выделенного канала. Существует очень большое количество типов маршрутизаторов удаленных офисов. Это объясняется как массовостью потенциальных потребителей, так и специализацией такого типа устройств, проявляющейся в поддержке одного конкретного типа глобальной связи. Например, существуют маршрутизаторы, работающие только по сети ISDN, существуют модели только для аналоговых выделенных линий и т. п. Типичными представителями этого класса являются маршрутизаторы Nautika компании Nortel Networks, Cisco 1600, Office Connect компании 3Com, семейство Pipeline компании Ascend.

Маршрутизаторы локальных сетей (коммутаторы 3-го уровня) предназначены для разделения крупных локальных сетей на подсети. Основное требование, предъявляемое к ним, - высокая скорость маршрутизации, так как в такой конфигурации отсутствуют низкоскоростные порты, такие как модемные порты 33,6 Кбит/с или цифровые порты 64 Кбит/с. Все порты имеют скорость по крайней мере 10 Мбит/с, а многие работают на скорости 100 Мбит/с. Примерами коммутаторов 3-го уровня служат коммутаторы CoreBuilder 3500 компании 3Com, Accelar 1200 компании Nortel Networks, Waveswitch 9000 компании Plaintree, Turboiron Switching Router компании Foudry Networks.

В зависимости от области применения маршрутизаторы обладают различными основными и дополнительными техническими характеристиками.


Классификация сетевых адаптеров


В качестве примера классификации адаптеров используем подход фирмы 3Com, имеющей репутацию лидера в области адаптеров Ethernet. Фирма 3Com считает, что сетевые адаптеры Ethernet прошли в своем развитии три поколения.

Адаптеры первого поколения были выполнены на дискретных логических микросхемах, в результате чего обладали низкой надежностью. Они имели буферную память только на один кадр, что приводило к низкой производительности адаптера, так как все кадры передавались из компьютера в сеть или из сети в компьютер последовательно. Кроме этого, задание конфигурации адаптера первого поколения происходило вручную, с помощью перемычек. Для каждого типа адаптеров использовался свой драйвер, причем интерфейс между драйвером и сетевой операционной системой не был стандартизирован.

В сетевых адаптерах второго поколения для повышения производительности стали применять метод многокадровой буферизации. При этом следующий кадр загружается из памяти компьютера в буфер адаптера одновременно с передачей предыдущего кадра в сеть. В режиме приема, после того как адаптер полностью принял один кадр, он может начать передавать этот кадр из буфера в память компьютера одновременно с приемом другого кадра из сети.

В сетевых адаптерах второго поколения широко используются микросхемы с высокой степенью интеграции, что повышает надежность адаптеров. Кроме того, драйверы этих адаптеров основаны на стандартных спецификациях. Адаптеры второго поколения обычно поставляются с драйверами, работающими как в стандарте NDIS (спецификация интерфейса сетевого драйвера), разработанном фирмами 3Com и Microsoft и одобренном IBM, так и в стандарте ODI (интерфейс открытого драйвера), разработанном фирмой Novell.

В сетевых адаптерах третьего поколения (к ним фирма 3Com относит свои адаптеры семейства EtherLink III) осуществляется конвейерная схема обработки кадров. Она заключается в том, что процессы приема кадра из оперативной памяти компьютера и передачи его в сеть совмещаются во времени. Таким образом, после приема нескольких первых байт кадра начинается их передача.
Это существенно (на 25-55 %) повышает производительность цепочки оперативная память -адаптер - физический канал - адаптер - оперативная память.

Такая схема очень чувствительна к порогу начала передачи, то есть к количеству байт кадра, которое загружается в буфер адаптера перед началом передачи в сеть. Сетевой адаптер третьего поколения осуществляет самонастройку этого параметра путем анализа рабочей среды, а также методом расчета, без участия администратора сети. Самонастройка обеспечивает максимально возможную производительность для конкретного сочетания производительности внутренней шины компьютера, его системы прерываний и системы прямого доступа к памяти.

Адаптеры третьего поколения базируются на специализированных интегральных схемах (ASIC), что повышает производительность и надежность адаптера при одновременном снижении его стоимости. Компания 3Com назвала свою технологию конвейерной обработки кадров Parallel Tasking, другие компании также реализовали похожие схемы в своих адаптерах. Повышение производительности канала «адаптер-память» очень важно для повышения производительности сети в целом, так как производительность сложного маршрута обработки кадров, включающего, например, концентраторы, коммутаторы, маршрутизаторы, глобальные каналы связи и т. п., всегда определяется производительностью самого медленного элемента этого маршрута. Следовательно, если сетевой адаптер сервера или клиентского компьютера работает медленно, никакие быстрые коммутаторы не смогут повысить скорость работы сети.

Выпускаемые сегодня сетевые адаптеры можно отнести к четвертому поколению. В эти адаптеры обязательно входит ASIC, выполняющая функции МАС - уровня, а также большое количество высокоуровневых функций. В набор таких функций может входить поддержка агента удаленного мониторинга RMON, схема приоритезации кадров, функции дистанционного управления компьютером и т. п. В серверных вариантах адаптеров почти обязательно наличие мощного процессора, разгружающего центральный процессор.Примером сетевого адаптера четвертого поколения может служить адаптер компании 3Com Fast EtherLink XL 10/100.


Классификация средств мониторинга и анализа


Все многообразие средств, применяемых для анализа и диагностики вычислительных сетей, можно разделить на несколько крупных классов.

Агенты систем управления, поддерживающие функции одной из стандартных MIB и поставляющие информацию по протоколу SNMP или CMIP. Для получения данных от агентов обычно требуется наличие системы управления, собирающей данные от агентов в автоматическом режиме.

Встроенные системы диагностики и управления (Embedded systems). Эти системы выполняются в виде программно-аппаратных модулей, устанавливаемых в коммуникационное оборудование, а также в виде программных модулей, встроенных в операционные системы. Они выполняют функции диагностики и управления только одним устройством, и в этом их основное отличие от цен­рализованных систем управления. Примером средств этого класса может служить модуль управления многосегментным повторителем Ethernet, реализующий функции автосегментации портов при обнаружении неисправностей, приписывания портов внутренним сегментам повторителя и некоторые другие. Как правило, встроенные модули управления «по совместительству» выполняют роль SNMP-агентов, поставляющих данные о состоянии устройства для систем управления.

Анализаторы протоколов (Protocol analyzers). Представляют собой програмные или аппаратно-программные системы, которые ограничиваются в отличие от систем управления лишь функциями мониторинга и анализа трафика в сетях. Хороший анализатор протоколов может захватывать и декодировать пакеты большого количества протоколов, применяемых в сетях, - обычно несколько десятков. Анализаторы протоколов позволяют установить некоторые логические условия для захвата отдельных пакетов и выполняют полное декодирование захваченных пакетов, то есть показывают в удобной для специалиста форме вложенность пакетов протоколов разных уровней друг в друга с расшифровкой содержания отдельных полей каждого пакета.

Экспертные системы. Этот вид систем аккумулирует знания технических специалистов о выявлении причин аномальной работы сетей и возможных способах приведения сети в работоспособное состояние.

Классы IP-адресов


IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме и разделенных точками, например, 128.10.2.30 - традиционная десятичная форма представления адреса, а 10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.

Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая - к номеру узла, определяется значениями первых бит адреса. Значения этих бит являются также признаками того, к какому классу

относится тот или иной IP-адрес.

На рис. 5.9 показана структура IP-адреса разных классов.

Рис. 5.9. Структура IP-адреса

Если адрес начинается с 0, то сеть относят к классу А

и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) Сетей класса А немного, зато количество узлов в них может достигать 224, то есть 16 777 216 узлов.

Если первые два бита адреса равны 10, то сеть относится к классу В. В сетях класса В под номер сети и под номер узла отводится по 16 бит, то есть по 2 байта. Таким образом, сеть класса В является сетью средних размеров с максимальным числом узлов 216, что составляет 65 536 узлов.

Если адрес начинается с последовательности 110, то это сеть класса С. В этом случае под номер сети отводится 24 бита, а под номер узла - 8 бит. Сети этого класса наиболее распространены, число узлов в них ограничено 28, то есть 256 узлами.

Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е,

Адреса этого класса зарезервированы для будущих применений.

В табл. 5.4 приведены диапазоны номеров сетей и максимальное число узлов, соответствующих каждому классу сетей.

Таблица 5.4. Характеристики адресов разного класса

Большие сети получают адреса класса А, средние - класса В, а маленькие класса С.



Коаксиальные кабели


Существует большое количество типов коаксиальных кабелей, используемых в сетях различного типа - телефонных, телевизионных и компьютерных. Ниже приводятся основные типы и характеристики этих кабелей.

RG-8 и RG-11 - «толстый» коаксиальный кабель, разработанный для сетей Ethernet l0Base-5. Имеет волновое сопротивление 50 Ом и внешний диаметр 0,5 дюйма (около 12 мм). Этот кабель имеет достаточно толстый внутренний проводник диаметром 2,17 мм, который обеспечивает хорошие механические и электрические характеристики (затухание на частоте 10 МГц - не хуже 18 дБ/км). Зато этот кабель сложно монтировать - он плохо гнется.

RG-58/U, RG-58 A/U и RG-58 C/U - разновидности «тонкого» коаксиального кабеля для сетей Ethernet l0Base-2. Кабель RG-58/U имеет сплошной внутренний проводник, а кабель RG-58 A/U - многожильный. Кабель RG-58 C/U проходит «военную приемку». Все эти разновидности кабеля имеют волновое сопротивление 50 Ом, но обладают худшими механическими и электрическими характеристиками по сравнению с «толстым» коаксиальным кабелем. Тонкий внутренний проводник 0,89 мм не так прочен, зато обладает гораздо большей гибкостью, удобной при монтаже. Затухание в этом типе кабеля выше, чем в «толстом» коаксиальном кабеле, что приводит к необходимости уменьшать длину кабеля для получения одинакового затухания в сегменте. Для соединения кабелей с оборудованием используется разъем типа BNC.

RG-59 - телевизионный кабель с волновым сопротивлением 75 Ом. Широко применяется в кабельном телевидении.

RG-62 - кабель с волновым сопротивлением 93 Ома, использовался в сетях ArcNet, оборудование которых сегодня практически не выпускается. Коаксиальные кабели с волновым сопротивлением 50 Ом (то есть «тонкий» и «толстый») описаны в стандарте EIA/TIA-568. Новый стандарт EIA/TIA-568A коаксиальные кабели не описывает, как морально устаревшие.



Комбинированные коммутаторы


У каждой из описанных архитектур есть свои преимущества и недостатки, поэтому часто в сложных коммутаторах эти архитектуры применяются в комбинации друг с другом. Пример такого комбинирования приведен на рис. 4.35.

Рис. 4.35. Комбинирование архитектур коммутационной матрицы и общей шины

Коммутатор состоит из модулей с фиксированным количеством портов (2-12), выполненных на основе специализированной БИС, реализующей архитектуру коммутационной матрицы. Если порты, между которыми нужно передать кадр данных, принадлежат одному модулю, то передача кадра осуществляется процессорами модуля на основе имеющейся в модуле коммутационной матрицы. Если же порты принадлежат разным модулям, то процессоры общаются по общей шине. При такой архитектуре передача кадров внутри модуля будет происходить быстрее, чем при межмодульной передаче, так как коммутационная матрица - наиболее быстрый, хотя и наименее масштабируемый способ взаимодействия портов. Скорость внутренней шины коммутаторов может достигать нескольких Гбит/с, а у наиболее мощных моделей - до 20-30 Гбит/с.

Можно представить и другие способы комбинирования архитектур, например использование разделяемой памяти для взаимодействия модулей.



Коммутация каналов


Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой - коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал.

Например, если сеть, изображенная на рис. 2.25, работает по технологии коммутации каналов, то узел 1, чтобы передать данные узлу 7, прежде всего должен передать специальный запрос на установление соединения коммутатору А, указав адрес назначения 7. Коммутатор А должен выбрать маршрут образования составного канала, а затем передать запрос следующему коммутатору, в данном случае Е. Затем коммутатор Е передает запрос коммутатору F, а тот, в свою очередь, передает запрос узлу 7. Если узел 7 принимает запрос на установление соединения, он направляет по уже установленному каналу ответ исходному узлу, после чего составной канал считается скоммутированным и узлы 1 и 7 могут обмениваться по нему данными, например, вести телефонный разговор.

Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

В настоящее время для мультиплексирования абонентских каналов используются две техники:

техника частотного мультиплексирования (Frequency Division Multiplexing, FDM);

техника мультиплексирования с разделением времени (Time Division Multiplexing, TDM).